京公网安备 11010802034615号
经营许可证编号:京B2-20210330
前面文章小编简单给大家介绍了泛化能力的一些基础知识,今天给大家带来的是提高模型泛化能力的方法--正则化。
一、首先来回顾一下什么是泛化能力
泛化能力(generalization ability),百科给出的定义是:机器学习算法对新鲜样本的适应能力。学习的目的是学到隐含在数据对背后的规律,对具有同一规律的学习集以外的数据,经过训练的网络也能给出合适的输出,该能力称为泛化能力。简单来概括一下,泛化能力就是一个机器学习算法能够识别没有见过的样本的能力,通俗点说就是学以致用,举一反三的能力。机器学习方法训练出一个模型,我们会希望这个模型不但是对于已知的数据(训练集)性能表现良好,而且对于未知的数据(测试集)也能够表现良好,这就表明这个模型具有良好的泛化能力。在实际应用子中,模型的过拟合(overfitting)与欠拟合(underfitting)能够最直观的体现出泛化能力的好坏。
根据泛化能力强弱,可以分为:
欠拟合:模型不能在训练集上获得足够低的误差;
拟合:测试误差与训练误差差距较小;
过拟合:训练误差和测试误差之间的差距太大;
不收敛:模型不是根据训练集训练得到的。
二、简单介绍正则化
正则化regularization的目标为:模型的经验风险和模型复杂度之和达到最小,即结构风险达到最小。也就是正则化的目的是为了防止过拟合, 从而增强泛化能力。
我们通常将正则化定义为:对学习算法的修改,目的是减少泛化误差而不是训练误差
在训练次数足够多,以及表达形式足够复杂的情况下,训练误差能够无限小,可是这并不代表着泛化误差的减小。相反的,一般情况下,这样会导致泛化误差的增大。最常见的例子是:真实数据的分布符合二次函数,但是欠拟合一般会将模型拟合成一次函数,而过拟合通常将模型拟合成高次函数。根据奥卡姆剃须原则:在尽可能符合数据原始分布的基础上,更加平滑、简单的模型,往往更加符合数据的真实特征。所以,我们必须采用采用某种约束,这也就引出了的正则化。
三、正则化---提高模型的泛化能力
按策略正则化可以分为以下三类:
(一) 经验正则化:利用工程上的技巧,实现更低的泛化误差,例如:提前终止法、模型集成、Dropout等;
1.提前终止(earlystop)
一种最简单的正则化方法,在泛化误差指标不再提升后,提前结束训练
2.模型集成(ensemable))
通过训练多个模型来完成该任务,这些模型可以是不同的网络结构,不同的初始化方法,不同的数据集训练出来的,也可以是采用不同的测试图片处理方法。总结来说就是,利用多个模型进行投票的策略
3.Dropout移除一部分神经元
Dropout采用的是"综合起来取平均”的策略,来防止过拟合问题。不同的网络会产生不同的过拟合问题,取平均会让一些“相反的”拟合有互相抵消的可能,整个Dropout过程就相当于 对很多个不同的神经网络取平均。而且因为dropout程序导致两个神经元不一定每次都在一个dropout网络中出现,这样会减少神经元之间复杂的共适应关系
(二)参数正则化:直接提供正则化约束,例如:L1/L2正则化法等;
L1/L2正则化方法,就是最常用的正则化方法,它直接来自于传统的机器学习。
L1正则化:
L2正则化:
(三)隐式正则化:不直接提供约束,例如:数据有关的操作,包括归一化、数据增强、扰乱标签等。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01