京公网安备 11010802034615号
经营许可证编号:京B2-20210330
feature importance,根据含义就能理解,也就是特征重要性,在预测建模项目中起着非常重要作用,能够提供对数据、模型的见解,和如何进行降维和选择特征,并以此来提高预测模型的的效率和有效性。今天小编为大家带来的是如何理解随机森林中的feature importance,希望对大家有所帮助。
一、简单了解feature importance
实际情况中,一个数据集中往往包含数以万计个特征,如何在其中选择出,结果影响最大的几个特征,并通过这种方法缩减建立模型时的特征数,这是我们最为关心的问题。今天要介绍的是:用随机森林来对进行特征筛选。
用随机森林进行特征重要性评估的思想其实非常简单,简单来说,就是观察每个特征在随机森林中的每颗树上做了多少贡献,然后取平均值,最后对比特征之间的贡献大小。
总结一下就是:特征重要性是指,在全部单颗树上此特征重要性的一个平均值,而单颗树上特征重要性计算方法事:根据该特征进行分裂后平方损失的减少量的求和。
二、feature importance评分作用
1.特征重要性分可以凸显出特征与目标的相关相关程度,能够帮助我们了解数据集
2.特征重要性得分可以帮助了解模型
特征重要性得分通常是通过数据集拟合出的预测模型计算的。查看重要性得分能够洞悉此特定模型,以及知道在进行预测时特征的重要程度。
3.特征重要性能够用于改进预测模型
我们可以通过特征重要性得分来选择要删除的特征(即得分最低的特征)或者需要保留的特征(即得分最高的特征)。这其实是一种特征选择,能够简化正在建模的问题,加快建模过程,在某些情况下,还能够改善模型的性能。
三、python实现随机森林feature importances
import xlrd import csv import numpy as np import pandas as pd import matplotlib.pyplot as plt from scipy.interpolate import spline #设置路径 path='/Users/kqq/Documents/postgraduate/烟叶原始光谱2017.4.7数字产地.csv' #读取文件 df = pd.read_csv(path, header = 0) #df.info() #训练随机森林模型 from sklearn.cross_validation import train_test_split from sklearn.ensemble import RandomForestClassifier x, y = df.iloc[:, 1:].values, df.iloc[:, 0].values x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.3, random_state = 0) feat_labels = df.columns[1:] forest = RandomForestClassifier(n_estimators=10000, random_state=0, n_jobs=-1) forest.fit(x_train, y_train) #打印特征重要性评分 importances = forest.feature_importances_ #indices = np.argsort(importances)[::-1] imp=[] for f in range(x_train.shape[1]): print(f + 1, feat_labels[f], importances[f]) #将打印的重要性评分copy到featureScore.xlsx中;plot特征重要性 #设置路径 path='/Users/kqq/Documents/postgraduate/实验分析图/featureScore.xlsx' #打开文件 myBook=xlrd.open_workbook(path) #查询工作表 sheet_1_by_index=myBook.sheet_by_index(0) data=[] for i in range(0,sheet_1_by_index.nrows): data.append(sheet_1_by_index.row_values(i)) data=np.array(data) X=data[:1,].ravel() y=data[1:,] plt.figure(1,figsize=(8, 4)) i=0 print(len(y)) while i![]()
相信读完上文,你对算法已经有了全面认识。若想进一步探索机器学习的前沿知识,强烈推荐机器学习之半监督学习课程。
学习入口:https://edu.cda.cn/goods/show/3826?targetId=6730&preview=0
涵盖核心算法,结合多领域实战案例,还会持续更新,无论是新手入门还是高手进阶都很合适。赶紧点击链接开启学习吧!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12