京公网安备 11010802034615号
经营许可证编号:京B2-20210330
文章来源: 接地气学堂
作者:接地气的陈老师
很多同学最怕听“建模型”仨字。尤其是建立“业务分析模型”。往往自己辛辛苦苦搞得LR、SVM、CNN被业务方狂喷:你这都是啥东西!脱离业务!不切实际!所以到底什么是“业务分析模型”,又改怎么建?我们今天系统讲解一下
1
业务分析模型是什么
首先,一个正儿八经的分析模型得包含三个条件:
所以,首先得把SWOT,PEST,4P之流的垃圾扫出“模型”队伍。因为这些玩意有逻辑、有目标,但很难用数据进行论证。不信你看那些什么SWOT,PEST的报告,四个框框里都没几个数字,即使有数字也很难论证:到底90后比80后减少5000万会对我们业绩产生几百万影响。无法量化计算的,不算分析模型。它们只是拿来美化ppt的。
业务分析模型的重点,在“业务”两个字。得让业务参与得进来,看得懂,能应用的,才叫业务分析模型。显然,我们不能指望产品经理、销售、运营、售后、物流的人去学《机器学习》《数学建模》《统计学》《python编程》所以数据分析师们经常打交道的算法模型就不要在这里用了——业务看不懂,参与不进来,问题解决不了,当然会喷没有用。
有的同学会疑惑:可我的领导只会提“建个模型”,说不出是业务模型还是算法模型,我怎么区别呢?有个最简单的原则是:非技术出身的领导,90%以上讲的是业务模型(剩下10%是他在朋友圈看了个协同过滤、神经网络之类的名字,然后临时起意想搞一下)。当然,想更准确判断,你可以仔细问:
既然要聚焦业务,自然下一步得详细了解:
有了这些,我们可以具体讨论,该如何建模。
2
现状描述模型
当单个指标不能全面描述现状的时候,就得一系列指标有逻辑地呈现,以全面描述现状、发现问题,这是所谓:现状描述模型。业务常见逻辑有2种:串联式、并联式。串联式模型用于描述一个前后分n个阶段的流程,需要完成一步再到下一步。从流程起点开始,到终点结束;并联式模型描述一个任务分开同时由各个线独立完成。从总目标开始,到执行任务的最小单位结束(如下图)。
因此梳理业务流程的时候,需要关注业务上下游部门、兄弟部门是如何协同的,从而构建出来。实际业务流程,可能既有串联,又有并联,比如我们常说的杜邦分析法,就是如此(如下图):
现状描述型模型的最大作用是:清晰责任,暴露问题。因为一般各个子部门,上下游部门各有自己的KPI,因此监控进度、复盘成果的时候,哪个环节掉链子一清二楚。所以在销售管理、运营管理中用的特别多。但注意:现状=/=问题,现状+标准=问题。因此只有标准单一且明确的时候才能直接看出问题来。如果标准本身很复杂,则需要更进一步的手段。
3
问题分类模型
如果判断一个指标好坏的标准只有一个,比如成本、利润,这时候是不需要模型的。大家都知道成本越低越好,利润越高越好,业务完全可以直接给判断标准。如果判断业务好坏需要2个标准,且这两个标准相关度低,这时候可以用矩阵模型来进行分类。常见的重要紧急矩阵,波士顿矩阵,质量/数量矩阵,都是这个原理(如下图)。
如果判断标准增加到3个以上,判断标准相互交叉情况太多太多,再用肉眼观察就很难判断谁好谁坏,这时候可以用DEA方法或者AHP来判断,相比之纯机器学习方法,DEA方法含义更简单直接,AHP方法有专家参与,都更容易被业务接受。
4
工作计划模型
在给定业务限制条件的情况下,经常出现最优化问题。比如给定了各个部门工时成本,求一个最优任务分配。这时候就是工作计划模型。最常见的就是解线性规划,在工作调配的时候用的非常多(如下图)。
5
未来预测模型
所有预测的基本假设,都是:未来发生的规律和过去一样,过去的场景会在未来重现。所以业务做预测的时候,常常会假设一些业务参数是固定的,然后推测未来情况。常见的做法,比如:
1、假设生命周期走势是不变的,推测未来情况
2、假设转化率/留存率是不变的,推测未来情况
3、假设投入产出比是不变的,推测未来情况
在一些发展稳定的行业里,这些假设常常很准。但注意,有三种情况下假设可能失效。
1、新业务、新场景导致无历史数据可参照。
2、突发且情况不明,导致所有转化率都异常。
3、业务运作出现明显问题,已无法按正常走势反推。
这时候要么更换预测方法,要么做足预案,提前准备后路。单纯指望预测100准,不论是业务模型还是算法模型,都会出问题。
6
什么时候用算法模型
看完以上,有同学会好奇:看起来业务模型能做很多事啊,那什么时候用算法模型呢?注意:算法模型本身的强项,就不是解决经营问题。算法模型的强项是图像识别、语义识别、复杂场景下动态规划。这些才是算法该发挥用处的地方。
就拿推荐算法举例:
1、商品有固定的搭配,比如治疗感冒就是VC+银翘,这叫:固定业务逻辑,这时候是不需要算法来推荐的,直接按业务逻辑走就好了。
2、商品无固定搭配,但业务方想推。比如保健品利润高,无论如何业务方都想推保健品,这叫:强业务关联。这时候也不需要算法来推荐,而是业务方得创造话术、广告、卖点、销售技巧,千方百计的去洗脑,特别是针对大爷大妈洗脑。
3、商品无固定搭配,且业务方无明确目标。比如天猫淘宝抖音这种,SKU数以亿计,这时候业务逻辑完全理不清,就可以上推荐算法,而且推荐算法目标常常是GMV最大,用户活跃时长最长一类。
类似的,找算法模型的应用场景。得主动回避开固定业务逻辑、强业务关联——找那些业务不知道、不清楚情况、无力加以控制的场景。比如:
1、全新业务上线,谁都说不准,没经验参考
2、预测整体走势,不考虑细节,先看基本面
3、业务无计可施,怎么做响应率就是上不去
4、考虑变量太多,用肉眼人手难以分类清楚
这时候可以大胆让业务逻辑退居二线,尝试用算法解决问题。可以名正言顺的跟业务说:这就是个黑箱。我们观察结果就好了——反正他们也没更好的办法,如果能做出成绩来,就是大功一件。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16