
CDA数据分析师出品
作者:泽龙、Mika
数据:真达
后期:泽龙
【导读】
北京时间7月20日,这个赛季的西甲联赛正式结束,最受关注的“全村的希望”武磊和他的西班牙人队彻底告别西甲。
今天我们就用数据来聊一聊武磊。Python技术部分请直接看第二部分。
今天我们聊一聊 武磊
最近,中国足球又成为了社会的焦点话题,12分钟跑、体能、成绩成了社会人士和专业人士互怼的话题,外行怼内行基本功都不行,还玩啥,内行怼外行足球是综合运动,你不懂。真的是热闹非凡,可能足球真的只分为内行和外行,完全不关心的人很少,是个看球的人都可以说自己懂足球,真是现实唯唯诺诺,网络重拳出击。
回到本期的主人公,中国足球第一人武磊,武球王,下赛季,武磊的去向一直占据的体育板块的头版头条,几家有中国背景的球队都想得到武磊,商业价值的确无可比拟,看看爱奇艺西甲的收视率,武磊登场的比赛和不登场的比赛相差70%,西班牙人整体收视率可以和英超媲美了,这就是商业价值,西班牙人虽然降级,但是乐动体育可是知名度节节攀升,这笔投资性价比还是很高的。
我们抽取了皇家西班牙人足球俱乐部在18/19 19/20 2个赛季的全部比赛数据,做了可视化分析,下面我们就来对应数据,解读下武磊的表现。
本文主要从这几个角度展开
01数据解读武磊
我们先来看看武磊职业生涯中的各项数据分析:
1武磊近年生涯回顾
看到武磊的生涯评分,从16年到20年,虽然成下降趋势,但是西甲的强度和中超的强度本身是2个世界,所以说下降也是情理之中,毕竟对手和队友都不一样,在西甲的1.5个赛季,武磊算是高开低走,但是西班牙人更是出现断崖式的下滑,所以要是对比武磊和西班牙人的下滑曲线,C君觉得这个赛季西班牙人真的配不上武磊。
2武磊身价达到1000万欧元
看了生涯走势,再看下身价走势。
武磊小时候的愿望,我要值1000万—真的实现了,西甲中下游球队的主力前锋值1000万也算是公平公正了,虽然进球数有点刺眼,但是创造机会能力强。最近武磊身价下降了200万,主要是因为西班牙人本赛季真的不给力,下赛季假如武磊可以登陆英超,估计身价可以更高。
3武磊欧洲进球曲线图
为了更直观的感受武磊的进球效率,我们统计了武磊正式比赛的进球数,做了折线图。
直观感受是进球效率的确不高,但西班牙人的进攻效率更是低下,基本每场比赛射门更是寥寥无几。只能说武磊不是强力中锋,没有能力一个人左右锋线,他更加舒服的位置是踢二中锋,跑位、射门,而不是护球、盘带、过人、传球。
4西班牙人进攻效率对比
其实也不能完全怪武磊的进攻效率,看看西班牙人的本赛季的进球数,也是惨绝人寰,而且这个不光是西甲,还加入了欧联杯的比赛,要是只看西甲,可以说西班牙人不降级都说不过去,场均也就1个球,再加上后卫线最强的是主力门将,防守常年出问题,可以说西班牙人配的上一个降级名额。
西班牙人队得分走势(2018.8.19-2019.5.18)
西班牙人队得分走势(2019.7.27-至今)
我们对比了上赛季的西班牙人,可以明显看出上赛季的西班牙人进攻好很多,可以达到场均2个球,而且稳定,后防线和本赛季相差不多,但是1个球就可以决定胜负,3分和0分的差距是巨大的。
说到防守,大家可能印象中防守弱的球队都不够凶狠,就是平时说的踢球比较干净,我们统计了犯规走势图,其实大体上看,和西甲平均值相差无几,西甲本身就不是强调身体的联赛。实际看来,西班牙人的丢球主要源于漏人和被人打反击。西班牙人和巴塞罗那同属一个地区,其实踢球的风格也相差无几。在球员能力严重不足的情况下去打全攻全守的足球,去打传控足球无异于自杀,中场丢球被人打反击就是本赛季西班牙人的写照。
西班牙人的降级真的是防守问题大于进攻问题,防守才是定位于小球会的球队立足之本。武磊的确浪费了不少机会,但每场触球都是个位数,也是挺难为武磊的,大家都在说孙兴慜厉害,但是孙兴慜浪费的机会、拿球的机会都要比武磊多很多,只能说他赢得了信任,拿球机会多了,形成了正向循环,武磊还没有真正赢得五大联 赛的最重。
02数据分析步骤
我们使用Python获取了球探体育网站上西班牙人的球队数据,地址:
http://zq.win007.com/cn/team/Summary/100.html
以下展示部分分析代码:
首先导入所需包,其中pandas用于数据读入和数据整理,pyecharts用于数据可视化分析。
import pandas as pd from pyecharts.charts import Bar, Pie, Line, Page from pyecharts import options as opts
1数据读入
该数据包含了西班牙人球队2013-08-20至2020-07-17日比赛数据,数据预览如下:
# 读入数据 df_4 = pd.read_excel('../data/球探体育比赛数据.xlsx') # 提取日期 df_4['日期'] = df_4['时间'].str.split(' ').str[0] df_4.head()
2数据预处理
去掉友谊赛的数据并按照日期进行升序排序。
# 去掉友谊赛 df_4 = df_4[df_4['比赛']!='球会友谊'] # 排序 df_4 = df_4.sort_values('日期') df_4.shape
# 筛选时间 df_sel2 = df_4[(df_4['日期'] >= '2019-07-26')] df_sel2.head()
# 提西班牙人 主队比分 zhudui = df_sel2[df_sel2['主队']=='西班牙人'][['日期', '比分']] # 分数 zhudui['分数'] = zhudui['比分'].str.split('-').str[0].astype('int') # 提西班牙人 客队比分 kedui = df_sel2[df_sel2['客队']=='西班牙人'][['日期', '比分']] # 分数 kedui['分数'] = kedui['比分'].str.split('-').str[1].astype('int') # 提取日期 riqi = df_sel2[['日期']] # 合并数据 riqi = pd.merge(riqi, zhudui[['日期', '分数']], on='日期', how='left') riqi = pd.merge(riqi, kedui[['日期', '分数']], on='日期', how='left') riqi.columns = ['日期', '主队分数', '客队分数'] # 填补空值 riqi = riqi.fillna(0) # 分数相加 riqi['分数'] = riqi['主队分数'] + riqi['客队分数'] riqi.head()
# 产生数据 x_data = riqi['日期'].values.tolist() y_data = riqi['分数'].values.tolist() # 折线图 line5 = Line(init_opts=opts.InitOpts(width='1350px', height='750px')) line5.add_xaxis(x_data) line5.add_yaxis('', y_data, label_opts=opts.LabelOpts(is_show=False), markpoint_opts=opts.MarkPointOpts(data=[opts.MarkPointItem(type_="min"), opts.MarkPointItem(type_="max"),]), ) line5.set_global_opts(title_opts=opts.TitleOpts(title='西班牙球队得分走势(2019.07.26-至今)'), xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(rotate='45'), axisline_opts=opts.AxisLineOpts(is_on_zero=False), ), yaxis_opts=opts.AxisOpts(max_=10, min_=-1, name="", type_="value", axislabel_opts=opts.LabelOpts(formatter="{value}"), splitline_opts=opts.SplitLineOpts(is_show=False), ) ) line5.set_series_opts(linestyle_opts=opts.LineStyleOpts(width=3, color='#4169E1')) line5.render()
# 计算得分 score_num = riqi['分数'].value_counts() # 产生数据 data_pair = [list(z) for z in zip([str(i) + '分'for i in score_num.index], score_num.values.tolist())] # 绘制饼图 pie5 = Pie(init_opts=opts.InitOpts(width='1350px', height='750px')) pie5.add('', data_pair, radius=['35%', '60%']) pie5.set_global_opts(title_opts=opts.TitleOpts(title='西班牙球队得分分布(2019.07.26-至今)'), legend_opts=opts.LegendOpts(orient='vertical', pos_top='15%', pos_left='2%')) pie5.set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {c} \n占比({d}%)")) pie5.set_colors(['#EF9050', '#3B7BA9', '#6FB27C', '#FFAF34', '#D8BFD8', '#00BFFF', '#7FFFAA']) pie5.render()
3.3 赛季 2019-07-26 - 今 西班牙球队犯规 黄牌 红牌
# 筛选时间 df_sel2 = df_4[(df_4['日期'] >= '2019-07-26')] # 产生数据 x_data = df_sel2['日期'].values.tolist() y_data1 = df_sel2['犯规'].values.tolist() y_data2 = df_sel2['黄牌'].values.tolist() y_data3 = df_sel2['红牌'].values.tolist()
# 折线图 line6 = Line(init_opts=opts.InitOpts(width='1350px', height='750px')) line6.add_xaxis(x_data) line6.add_yaxis('犯规', y_data1, markpoint_opts=opts.MarkPointOpts(data=[ opts.MarkPointItem(type_='max', name='最大值'), opts.MarkPointItem(type_='min', name='最小值') ])) line6.add_yaxis('黄牌', y_data2, markpoint_opts=opts.MarkPointOpts(data=[ opts.MarkPointItem(type_='max', name='最大值'), opts.MarkPointItem(type_='min', name='最小值') ])) line6.add_yaxis('红牌', y_data3, markpoint_opts=opts.MarkPointOpts(data=[ opts.MarkPointItem(type_='max', name='最大值'), opts.MarkPointItem(type_='min', name='最小值') ])) line6.set_global_opts(title_opts=opts.TitleOpts(title='西班牙球队犯规-黄牌-红牌走势图(2019.07.26-至今)'), xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(rotate='45'), axisline_opts=opts.AxisLineOpts(is_on_zero=False)), yaxis_opts=opts.AxisOpts(max_=30, min_=0, name="", type_="value", axislabel_opts=opts.LabelOpts(formatter="{value}"), splitline_opts=opts.SplitLineOpts(is_show=False), ) ) line6.set_series_opts(label_opts=opts.LabelOpts(is_show=False), linestyle_opts=opts.LineStyleOpts(width=3) ) line6.render()
结语
本赛季,到底是武磊配不上西班牙人,还是西班牙人配不上武磊,这个还是留给大家去评判,可以留言给我们,说出你的观点。
如果还想看任何体育相关的数据分析
同样请给我们留言吧
我们立刻安排上!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-07-31大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-07-31CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-07-31SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-29用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-29从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-29CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-29解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-29用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-29从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-292025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-29