
7月15日,北京文理研修学院和北京国富如荷网络科技有限公司(以下简称:国富如荷)就"校企合作,协同育人"签订了战略合作协议。双方在招生、配套学历、学制和培养模式、教学方式、学生管理、就业服务等具体事项上达成了深度合作,共同创立"北京文理研修学院CDA大数据学院"及"CDA大数据教育实训基地", 形成产教融合、校企合作、知行合一的共同育人机制。
(左)北京文理研修学院董事长俞雷&(右)国富如荷创始人赵坚毅博士
据新华社《瞭望》7月发布的信息,目前大学生就业数据仍不乐观,一些大学毕业生就业率较去年同期有5~20个百分点的降幅。北京某高校截至7月4日的总体就业率为81.46%,比去年同期下降了7.98个百分点;上海高校截至5月末的整体就业率较去年同期约有15个百分点的下降。学生就业率持续走低的最大原因是企业对于高校毕业生需求走低,导致这一矛盾现象的根本原因是劳动力供求结构失衡,但深层次的原因是当前我国教育培训机制与市场需求仍存在脱节,特别是大学教育与社会需求脱节。
为了解决大学生就业保障问题,2018年教育部会同国家发展改革委、工业和信息化部、财政部、人力资源社会保障部、国家税务总局制定了《职业学校校企合作促进办法》,加快完善职业教育和培训体系,深化产教融合、校企合作。国家期望用社会的力量与高校联合研发更符合时代发展的人才培养模式与标准,真正让高校毕业生成为"企业需要的人才"。
与大量毕业生无法就业形成反差的是大数据行业对于人才的需求。2020年5月6日,人力资源和社会保障部发布《新职业—大数据工程技术人员就业景气现状分析报告》,报告显示:预计2020年中国大数据行业人才需求规模将达210万,2025年前大数据人才需求仍将保持30%—40%的增速,需求总量在2000万人左右。国家于2020年7月公布了《中华人民共和国数据安全法》草案。其中第18条明确提出 "国家支持高等学校、中等职业学校和企业等开展数据开发利用技术和数据安全相关教育和培训"的方针,这说明对于人才教育的发展方向,国家不断给予引导,属于急迫需求。
在此形势下,北京文理研修学院与国富如荷率先启动了数据分析类职业技能教育赋能模式,开设符合时代发展的新型大数据相关专业,让更多普通学生通过专业的大数据相关职业教育,使其达到国际化CDA数据分析师认证标准,成为补充国家人才缺口的人才,从而解决校企之间供需失衡问题。
双方团队交流讨论
在未来,北京文理研修学院与国富如荷会进一步夯实已有的大数据教育模型,拓展晋级式课程,用规范化国际化标准来制定教学大纲,并向全国推广这种新型校企合作办学模式,让更多的年轻人拥有美好未来!
双方背景介绍:
北京文理研修学院始建于1993年,是北京市教委批准的全日制民办非学历高等教育机构,前身为北京达德大学,是由民盟北京市委与香港达德学院北京校友会共同申请举办, 2007年经北京市教委批准正式更名为北京文理研修学院。多年来,为了更好的服务社会,培养更多的实用人才,学院在秉承"崇德、博学、笃行、至善"的校训,坚持"质量立校,特色兴校,人才强校"的办学理念下,逐步形成了独具特色的办学模式并于2012年至2017年荣获北京市5A级社会组织(2012年北京市民政局授予)。学院连续多年为北京市民办高等教育机构办学状况评估合格院校。
北京国富如荷网络科技有限公司是面向中高端用户的、培养DT时代前沿技术人才的、国际化的职业教育集团。CDA数据分析师认证是国富如荷集团公司研发的一套专业化、科学化、国际化、系统化的人才考核标准,分为CDA LEVELⅠ,LEVEL Ⅱ,LEVEL Ⅲ,涉及金融、电商、医药、互联网、电信等行业大数据及数据分析从业者所需要具备的技能。
目前集团已为中国移动、中国联通、中国银行、招商银行、中国邮政集团、国家电网、奔驰、宝马、联想、无限极、苏宁、金拱门、字节跳动、广州地铁等近百家名企输送过数据分析领域优秀高端人才。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04