
python是一款功能强大的数据分析工具,上手比较简单,因此现在很多人都在学习和使用python。要想熟练应用python到工作和生活中,必须掌握python的基础知识,今天小编就与大家分享python 为什么用 # 号作注释符,希望对大家学习和使用python有所帮助。
文章来源: Python猫
作者:豌豆花下猫
关于编程语言中的注释,其重要性基本上已为大家所共识。
然而关于注释的规范,这个话题就像我们之前聊过的缩进、终止符和命名方式一样,众口难调。
注释符通常可分为两种,即行注释与块注释(inline/block),它们在不同的编程语言中的符号可谓让人眼花缭乱。
比如行注释符,它至少有以下的 17 种之多(出自维基百科):
其中两个最大的阵营分别是“//”与“#”号:
那么,Python 为什么用“#”号作注释符,而不是“//”呢?
这个问题恐怕没办法从解析的效率、符号的辨识度和输入的便利性等方面回答,因为它们基本上没有区别。
我没有找到官方的解释,但是从这些注释符的阵营中,已经不难得出一个较为合理的解释:
Python 在创造之初,从 C 和 Shell 语言中借鉴了不少东西,但它是一种脚本语言,因此在注释符这个最为基础的语言要素上,就偏向了脚本语言的传统。
在某些“类脚本语言”中,比如 yaml、conf 和 ini 等格式的配置文件,它们大多也是采用脚本语言的“#”号作为注释符。
所以,Python 行内注释符的选择,大概可以归结为一种历史原因,即借鉴了 Shell 脚本语言的写法。
相比于行注释符的多样,块注释符更加是让人眼花缭乱:
大多数写法是我从未见过的,有些甚至是难以忍受的,槽点太多!
在这份表格里,我们看不到 Python,因为从严格意义上讲,Python 并没有块注释符!
一般而言,我们在连续的每行内容前面加“#”号,达到块注释的效果。块注释被看作是多个行注释。
PEP-8 中是这么建议的:
Each line of a block comment starts with a # and a single space (unless it is indented text inside the comment).
有人曾在 Twitter 上发问,为什么 Python 没有块注释符?
Guido 回复称,可以将多行字符串用作块注释:
Python 的多行字符串用三对单引号或双引号表示,它还可以用作文档字符串(即Documentation Strings,简写docstrings)。
但是,将它当做多行注释符使用,在语义上则有点怪怪的——它表示的是一段字符串,虽然没有赋值给变量,不会生成代码,但是它并非语义上的注释。
由于脚本语言的特性,它允许我们写一段“无根的字符串”,在语法上没有问题,也没有负作用(negative effects),但是,如果把它作为注释使用,这就是一种副作用(side effects)了。
从这点上考虑,我虽然不反对有人把多行字符串写法用作块注释,但是我会更推荐大家使用“#”号作注释。
另外,对于无用的代码,最好的做法就是直接删除,如果后续发现有需要,再回退修改。详细的多行注释尽量放在文档字符串中,这样在核心代码中就会很少出现多行注释的情况了。
对于 Python 的注释符用法,大家是怎么想的呢?欢迎留言交流。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03