京公网安备 11010802034615号
经营许可证编号:京B2-20210330
来源: Python猫
作者:豌豆花下猫
关于变量的命名,这又是一个容易引发程序员论战的话题。如何命名才能更具有可读性、易写性与明义性呢?众说纷纭。
本期“Python为什么”栏目,我们将聚焦于变量命名中的连接方式,来切入这块是非之地,想要回答的问题是——Python 为什么要推荐蛇形命名法?
首先一点,对于单个字符或者单词(例如:a、A、PYTHON、Cat),当它们被用作变量名时,大致有全小写、全大写和首字母大写这几种情况。编程语言中出现这些情况时,它们基本上跟英语的表达习惯是相同的。
但是,编程语言为了令变量名表达出更丰富的含义,通常需要使用多个单词或符号。英语习惯使用空格来间隔开单词,然而这种用法在编程语言中会带来一些麻烦,所以程序员们就创造出了另外的方法:
总体而言,这些命名法都是要克服单词间的空格,从而把不同单词串连起来,最终达到创造出一种新的“单词”的效果。
我画了一张思维导图,大略区分了这几种命名法:
如果按照受众量与知名程度排名,毫无疑问排前两位的是驼峰命名法和蛇形命名法。
我们简单比较一下它们的优缺点:
由此可见,它们各有优缺点,但哪一方都不具有压倒性。我个人稍微偏好于蛇形命名法,但是在需要用驼峰命名的时候(比如写 Java 时),也能无障碍切换。
需要指出的是,Python 也推荐使用驼峰式命名,那是在类名、Type 变量、异常 exception 名这些情况。而在包名、模块名、方法名和普通变量名等情况,则是推荐用蛇形命名(lower_case_with_underscores)。
那么,为什么 Python 会推荐用蛇形命名法呢?
最大的原因是历史原因。蛇形命名方式起源于 1960 年代,那时它甚至还没有特定的名称。Python 从 C 语言中借鉴过来后,给它起名为“lower_case_with_underscores”,即带下划线的小写命名。
直到 21 世纪初的几年,在 Intel 和 Ruby 社区中,才有人开始以“snake_case”即蛇形命名来称呼它。
现今有不少编程语言在某些场景下会推荐使用蛇形命名法,而 Python 则是其中最早这么做的之一,并且是使用场景最多的语言之一。
维基百科上统计了一份清单,可以看出 Python 对它的偏好:
其次,还有一个比较重要的原因,那就是 Python 对下划线“_”的独特偏爱。
比如类似于 _xx、__xx、xx_、__xx__ 等等的写法就随处可见,甚至还有孤零零一个下划线 _ 作为变量的特殊情况。这样看来,下划线作为单词间的连接,恰恰是这种传统习惯的一部分。
最后,我还看到过一种解释:因为 Python 是蟒蛇啊,理所当然是用蛇形命名……
对于这三个解释,你们是如何感想的呢?对于蛇形命名法,大家是喜欢还是不喜欢呢?欢迎留言交流。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16