京公网安备 11010802034615号
经营许可证编号:京B2-20210330
来源: Python猫
作者:豌豆花下猫
关于变量的命名,这又是一个容易引发程序员论战的话题。如何命名才能更具有可读性、易写性与明义性呢?众说纷纭。
本期“Python为什么”栏目,我们将聚焦于变量命名中的连接方式,来切入这块是非之地,想要回答的问题是——Python 为什么要推荐蛇形命名法?
首先一点,对于单个字符或者单词(例如:a、A、PYTHON、Cat),当它们被用作变量名时,大致有全小写、全大写和首字母大写这几种情况。编程语言中出现这些情况时,它们基本上跟英语的表达习惯是相同的。
但是,编程语言为了令变量名表达出更丰富的含义,通常需要使用多个单词或符号。英语习惯使用空格来间隔开单词,然而这种用法在编程语言中会带来一些麻烦,所以程序员们就创造出了另外的方法:
总体而言,这些命名法都是要克服单词间的空格,从而把不同单词串连起来,最终达到创造出一种新的“单词”的效果。
我画了一张思维导图,大略区分了这几种命名法:
如果按照受众量与知名程度排名,毫无疑问排前两位的是驼峰命名法和蛇形命名法。
我们简单比较一下它们的优缺点:
由此可见,它们各有优缺点,但哪一方都不具有压倒性。我个人稍微偏好于蛇形命名法,但是在需要用驼峰命名的时候(比如写 Java 时),也能无障碍切换。
需要指出的是,Python 也推荐使用驼峰式命名,那是在类名、Type 变量、异常 exception 名这些情况。而在包名、模块名、方法名和普通变量名等情况,则是推荐用蛇形命名(lower_case_with_underscores)。
那么,为什么 Python 会推荐用蛇形命名法呢?
最大的原因是历史原因。蛇形命名方式起源于 1960 年代,那时它甚至还没有特定的名称。Python 从 C 语言中借鉴过来后,给它起名为“lower_case_with_underscores”,即带下划线的小写命名。
直到 21 世纪初的几年,在 Intel 和 Ruby 社区中,才有人开始以“snake_case”即蛇形命名来称呼它。
现今有不少编程语言在某些场景下会推荐使用蛇形命名法,而 Python 则是其中最早这么做的之一,并且是使用场景最多的语言之一。
维基百科上统计了一份清单,可以看出 Python 对它的偏好:
其次,还有一个比较重要的原因,那就是 Python 对下划线“_”的独特偏爱。
比如类似于 _xx、__xx、xx_、__xx__ 等等的写法就随处可见,甚至还有孤零零一个下划线 _ 作为变量的特殊情况。这样看来,下划线作为单词间的连接,恰恰是这种传统习惯的一部分。
最后,我还看到过一种解释:因为 Python 是蟒蛇啊,理所当然是用蛇形命名……
对于这三个解释,你们是如何感想的呢?对于蛇形命名法,大家是喜欢还是不喜欢呢?欢迎留言交流。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02