京公网安备 11010802034615号
经营许可证编号:京B2-20210330
关于Kafka,相信大家都不陌生,一个消息流的处理平台,目前很多开发人员都把它当做一个生产&消费的中间件。今天小编就跟大家系统介绍一下Kafka,希望对大家有所帮助。
一、Kafka概念
Kafka是一个消息系统,用作LinkedIn的活动流(Activity Stream)和运营数据处理管道(Pipeline)的基础。Kafka是由LinkedIn开发出来的,一个分布式基于发布/订阅的消息系统,使用Scala进行编写。 Kafka具有更高的吞吐量,内置的分区也使得kafka具有更好的容错和伸缩性,这些特性使得 Kafka应用广泛,是大型消息处理应用的首选之策。
Kafka是一种高吞吐量的分布式发布订阅消息系统,它可以处理消费者规模的网站中的所有动作流数据。简单来理解,Kafka就像是一个邮箱,生产者可以当做发送邮件的人,消费者就是收邮件的人,Kafka是用来存东西的平台,只不过Kafka提供了一些处理邮件的机制。
二、Kafka基本架构
Broker:Kafka节点,一个Kafka节点就是一个broker,多个broker能够组成一个Kafka集群
Topic:一类消息,消息存放的目录也就是主题,比兔page view日志、click日志等,都能够以topic的形式存在,Kafka集群可以同时负责多个topic的分发
massage: Kafka中最基本的传递对象。
Partition:topic物理上的分组,每个topic包含partition,每个partition是一个有序的队列
Segment:partition物理上由多个segment组成,每个Segment存着message信息
Producer : 生产者,负责生产message发布到topic
Consumer : 消息消费者,订阅topic并消费message, consumer从broker拉取(pull)数据并进行处理。
Consumer Group:消费者组,一个Consumer Group包含多个consumer
Offset:偏移量,消息partition中的索引即可
三、Kafka优势
1. 分布式
大数据处理业务中极为重要的流处理框架,分布式是Kafka的天然属性。
2. 高性能:
Kafka高性能体现在两方面:(1)高吞吐量,最高能达到几十万每秒的级别的吞吐量;(2)低延时,这使得Kafka能够很好的配合SparkStreaming等其它流式处理框架的进行数据实时性处理。
3. 持久性和扩展性:
这两点是Kafka区别于其它消息队列的重要特点,主要体现在:(1)数据可持久化,(2) 容错性;(3)大水平方向上扩展;(4) 消息自动平等,避免热点问题。
四、Kafka常用场景
(1)消息队列
(2)网站活性跟踪
(3)可操作的监控数据
(4)日志收集
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24