京公网安备 11010802034615号
经营许可证编号:京B2-20210330
文章来源于:微信公众号接地气学堂
作者:接地气的陈老师
总有不懂数据的人,把算法工程师当算命工程师用。用完了还嫌弃预测不准,甚至还把业务开展不力甩锅给预测。公司业绩遇到问题,不是集中起来想办法,而是集中起来批斗为什么没有预测到……全!是!扯!蛋!今天系统科普一下,到底数据预测能干啥。为数据分析师们发声。
1无法预测的场景
数据预测,得有数据才能预测,这是个基本前提。所以没有数据,预测个屁。典型的没有数据的场景有:
宏观政策,在公布以前是没有任何数据可以记录的,它压根就不存在。咋记录法,又咋预测法。因此完全无法预测效果,只能等到公布以后才能观察。会有人说:大政方针也要看数据来定,那理论上可以通过数据来预测方针的公布时间。想得美。大政方针往往涉及利益集团间的博弈,因此具体啥时候推出,很有可能是各方激烈斗争的结果,跟数据不完全有关系。真想摸清楚大政方针的走向,得找关系。走上层路线,接近权力核心。光站在外边看,就是隔靴搔痒。
主观意愿问题同理。人的主观意愿会表现在表情、言谈、举止,唯独很难表现在可记录的数据上。人的脑门上没有一个大窟窿,里边的数据哔哔哔哔不停往外冒。想搞清某个人的主观意愿,你得跟他沟通,而不是纠结数据。如果是针对某位大人物的,就鞍前马后伺候好,察言观色;如果是针对普通用户的,走用户研究路线,那边有整套的方法。
全新创意问题也同理。没有出现过的东西,是没有数据可预测的。很多人不服气——这为啥都不能预测!
不服气的同学们,请听题:
不服,来战!预测吧,阿鲁巴!
你也拍桌子骂娘——起码告诉我阿鲁巴是个啥啊!是滴,答对了。这就是解决全新创意问题的办法:把抽象的概念具体化,然后拿着具体概念做测试。
概念越具体,才越能测试出用户的真实态度。比如加个条件:阿鲁巴是一台手机。是不是就稍微有点感觉。再加个条件:阿鲁巴是一台薄的像纸一样的手机,是不是更有感觉了。根据概念的具体程度,有三个层级的活可以做(如下图)
这又是个用户研究的活,找你的用研中心,让他们开工。拿到第一批到第N批测试数据后,数据分析师可以帮忙搞搞分析。但是先采集真实数据是前提。
2可预测但被人扭曲
从本质上看,数据只是业务表现的数字记录,业务本身才是重点。一个简单的事实是:业务是做出来的,不是算出来的。决定业务走势的是:到底业务部门的哥们有多大本事。所以凡是人为能干预的,都很难做出精准预测,甚至预测本身有可能反噬业务表现。
比如:
不过上边都不是最狠的,最狠的是:建立科学预测体系,评价产品销量。然后市场部大老板自己收了供应商回扣,一句:“老夫从业20年,从来没见过这种情况,你这预测不符合业务”。大笔一挥,直接按回扣数额预测销量。遇到这种事,说理都没地方说理去。
简单来说,业务想搞事,你预测得准也会变得不准。业务想甩锅,永远都可以说:预测的不够准,导致决策不够精准。这就好比开车的时候,预测到前方转弯有大石头,预计1分钟后撞上。开车的人听到这个预测就得踩刹车。而不是继续狂飙,撞上石头以后再来抱怨:“你预测的不准,不是60秒后撞上,而是59.99秒以后撞上,导致我没踩刹车。”——你TM不踩刹车,还来怪预测了。
所以,这个问题本质是责任谁承担的问题。合理的责任划分方式,是:只要有人为干预环节,统统是决策人本身承担责任。本身数据预测只是一个判断依据。除了数据,做业务的经验、能力、人脉资源、市场嗅觉、用户感知,都是判断依据。用起来呀。
在具体方法上,所有有人为干预的业务流程,都可以分阶段输出预测结果。根据上一阶段的情况,随时修正预测值,只要预测的定性没有错(前方本来没石头,预测成有石头,就是定性错误)就能交付业务使用。这样才能保证最终结果不出问题。就像开车上路,导航是实时更新预计到达时间和道路拥堵情况,而不是一上来预测个最终时间一样。
3可预测但有限制
数据预测有个基本前提:过去的经验未来会重现,未来的走势和过去的逻辑相同。无论是简单的靠经验推导,还是复杂的算法逻辑,都是基于这个前提的。正是有这个前提,才能根据历史数据才预测未来。所以,所有预测都会加上一句:在XX背景/前提/假设下预测。正因此,很多经典的预测结果,都是基于农林牧渔、医疗生物,这种有客观依据,不宜改变规律,内在科学原理的业务得出的。
但是商业社会显然不符合这些个条件。商业社会就是充满不确定性,受突发事件和意外影响。甚至商业社会还可以人为制造热点,操控舆情,无风掀起三尺浪。不是商业企业孜孜不倦的教育,女士们还在用雪花膏,哪来整套整套的水、乳、液、精华、各种色号……男士们还在下围棋、象棋、军棋,哪来的皮肤、武器、暴击、加速、闪现、命中……所以本质上所有的预测都是有前提下适度预测,遇到新的场景就得重新找数据集重新修正。
用过去预测未来,有三种基本预测方法(如下图):
没有一种方法是绝对准确的,都得结合预测效果做修正;输入的数据越少,输入的关键变量越少,预测精度必然越低。细分越具体的场景,可采集的数据越多,短期内预测的波动性会越小。所以想取得好的预测效果,得仔细挑选场景,确保优质的信息来源,建立修正机制。这些,又和需要与业务大量沟通,密切协作有关系。
只有算命的,才是:
真正的数据预测,就是需要体系化运作。比起赌运气赌最后的结果99.999999%准确。而是细致分析预测场景,结合业务动作,选择合适的方法,达到业务上的目标即可。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29