京公网安备 11010802034615号
经营许可证编号:京B2-20210330
透视优酷土豆的大数据工程_数据分析师
每个去视频网站看过视频的用户,都知道,在看完一个视频之后,会有相关的视频推荐,这个不足为奇的功能,就是大数据的体现,视频行业在不留意间早就成为了大数据的弄潮者。
琢磨用户喜欢什么样的视频,提高寻找内容的效率,这是大数据在视频行业应用的一个小小案例,本期《数读》聚焦视频行业,看大数据在视频中的数字游戏。优酷土豆集团CTO姚健向我们娓娓道来优酷土豆在大数据上的实践。
图:优酷土豆集团CTO姚健
推荐视频:看上去简单的高深应用
姚键是优酷土豆集团CTO,据他介绍,优酷新上线的首页页面上,光是导航栏上的视频分类就有21个,21个不同类型的内容,这意味着会有各种不同的用户来优酷看视频,要想给不同的用户推荐他们喜欢的视频,这靠的是一个叫做“协同过滤推荐”的技术。
百度百科上这样介绍协同过滤推荐(Collaborative Filtering recommendation):“是在信息过滤和信息系统中正迅速成为一项很受欢迎的技术。与传统的基于内容过滤直接分析内容进行推荐不同,协同过滤分析用户兴趣,在用户群中找到指定用户的相似(兴趣)用户,综合这些相似用户对某一信息的评价,形成系统对该指定用户对此信息的喜好程度预测。”
这是亚马逊、谷歌等互联网巨头都在使用的技术。亚马逊会告诉你“买了A商品的顾客也同时购买了B商品”,Youtube上,一个视频播放结束,马上就会出现相关推荐视频。
看上去简单的相关推荐,其实在优酷的视频推荐中涉及上百个参数,每次要调整参数,都要手动调整十几甚至几十个参数,每天推荐视频的数据模型中要涉及的数据高达几十亿。
一次小小的参数调整,带来的后果,可能是当天视频观看带来几百万的增长,也可能是在算法稳定后的未来几周,甚至几个月带来视频观看量的曲线变化。
当然,数字证实,通过这种协同过滤推荐给用户的视频是靠谱的,因为在海量的视频中寻找自己喜欢的视频成本是很高的,推荐视频的打开率也令人满意。
优酷土豆心中的“大数据”
数据的挖掘、分析,用在推荐视频上,还只是个小意思。优酷在2010年推出的“优酷指数”把大数据精神进一步强化,把视频播放周期、用户核心特征、用户播放行为、视频热度排行等数据进行展示。
姚键这样介绍优酷指数诞生的背景:“2010年的时候,优酷在PC互联网时代已经成为最有影响力的视频网站,优酷希望能够在行业内树立一个标杆,在强化优酷品牌的同时,也打造优酷指数这样一个概念。”
今年,优酷指数进而演变成“中国网络视频指数”,加入了土豆网以及移动客户端的视频数据,对数字感兴趣的用户,可以从这个指数里读出很多内容。
作为一款平台化的产品,“中国网络视频指数”在优酷土豆集团中的参考价值无处不在,从广告售卖,到版权购买,再到播放器产品的优化,等等,处处都能够作为指导依据。
据姚键透露,优酷土豆集团推出的数据报告给节目制作方、影视剧公司、第三方分析机构等了解视频节目的播放信息,以及观众人群的分析提供了依据;在广告销售方面,能够为广告主呈现出用户行为特征,提供广告投放价值的分析;在进行版权购买的时候,可以根据指数的走向来帮助决策;公司内部,哪怕是播放器产品的用户体验优化,都可以查看数据分析结果,查看按钮的摆放和使用频率等。
这些价值都是显而易见的,还有我们在表面看不到的,通过数据分析的结果来指导优酷土豆集团的自制内容。
“比如说优酷有很多自制的内容,有很多的微电影、综艺节目等等,这些播放数据可以显示出哪些题材是用户喜欢的,用户看到哪里就看不下去了,在哪里是拖放观看的,一系列的用户行为可以清晰地告诉内容制作人员,应该怎么去剪辑视频,怎么去选择内容题材。”姚键说。
其实这个过程也是对视频质量进行分析的过程,在优酷土豆的搜索、推荐中按照视频质量进行排序,反过来也提高了推荐成功率。
然而,大数据读出的数据,其指导意义还远不止此。
每部电影、电视剧在播出后都会有对应的数据,哪些演员受欢迎,哪些题材受追捧,通过分析数据就可以慢慢发现背后的原因,把这个受欢迎的故事讲出来,这就是可见的未来。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12