
在数据分析过程中,我们会用到各种各样的数据模型。但有些模型并不是完美的,存在者各种各样的缺点,置之不理很可能会影响最终的数据分析结果。这也就意味着,我们需要让模型最优化。通过模型优化,训练出更好的模型,更好的进行数据分析。下面,小编简单整理了几种常用的模型优化方法,希望对大家有所帮助。
1. 梯度下降法(Gradient Descent)
梯度下降法——最早的、最容易,同时也是最长用到的模型优化方法。
梯度下降法实现很容易,在目标函数为凸函数的情况下,梯度下降法的解就是全局解。通常来说,其解是全局最优解这一点并不能保证,而且梯度下降法,它的速度也并不是最快的。梯度下降法的优化思想为:把当前位置负梯度的方向当做搜索方向,这是该这一方向是当前位置的最快下降方向,所以又有”最速下降法“的叫法。梯度下降法越是接近目标值,其步长就会越小,前进也会越慢。
2. 牛顿法和拟牛顿法
a.牛顿法(Newton's method)
牛顿法其实是一种在实数域和复数域上,近似求解方程的方法。此方法使用f (x)函数的泰勒级数里的前面几项来找寻方程f (x) = 0的根。收敛速度快是此方法最大的特点。
因为牛顿法是确定下一次的位置依靠的是当前位置的切线,所以又有"切线法"这一很形象的名称。
b.拟牛顿法(Quasi-Newton Methods)
拟牛顿法可以说是非线性优化问题求解最常用的、最有效的方法了。拟牛顿法是20世纪50年代,由美国Argonne国家实验室的物理学家W.C.Davidon提出的·,这一算法在当时的时代,无疑是非线性优化领域最具有创造性的发明之一了。
拟牛顿法的本质思想为:对牛顿法每次需要求解复杂的Hessian矩阵的逆矩阵这一缺陷进行改善。拟牛顿法使用正定矩阵来近似Hessian矩阵的逆,这样在很大程度上减小了运算的复杂度。拟牛顿法与梯度下降法相同,只对每一步迭代时知道目标函数的梯度有要求。通过测量梯度的变化,构造出一个目标函数的模型,并使之足以产生超线性收敛性。而且相比牛顿法,拟牛顿法并不需要二阶导数的信息,所以有时反而比牛顿法更有效。
3. 共轭梯度法(Conjugate Gradient)
共轭梯度法是介于梯度下降法与牛顿法之间的一个模型优化方法,只需要利用一阶导数信息,但却改善了梯度下降法收敛速度慢这一缺陷,同时又克服了,牛顿法需要存储和计算Hesse矩阵,并求逆的缺点。共轭梯度法既能解决大型线性方程组问题,又是解大型非线性最优化最有用的算法之一。因为共轭梯度法具有所需存储量小,步收敛性,高稳定性,不需要任何外来参数的优点,在各种模型优化方法中,是极为重要的一种。
4. 启发式优化方法
启发式优化方法指的是:人在解决问题时,所采取的一种根据经验规则进行发现的方法。这一方法特点是,当解决问题时,可以利用过去的经验,选择行之有效的方法,而并不是以系统的、确定的步骤去找寻答案。启发式优化方法有很多种类,其中最为经典的有:模拟退火方法、遗传算法、蚁群算法以及粒子群算法等等。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16