京公网安备 11010802034615号
经营许可证编号:京B2-20210330
混淆矩阵(confusion matrix),又被叫做错误矩阵(error matrix)。矩阵的每一列代表分类器对于样本的类别预测,矩阵的每一行代表版本所属的真实类别。
’混淆矩阵‘这个名字来源于,它能够很容易的看到机器学习是否将样本的类别给混淆了(也就是一个class被预测成另一个class)。
混淆矩阵就是为了进一步分析性能而对该算法测试结果做出的总结,现在假设有一个用来对猫(cats)、狗(dogs)、兔子(rabbits)进行分类的系统,共有 27 个动物样本:8只猫, 6条狗, 13只兔子。混淆矩阵如下图:
在预测分析中,混淆矩阵,表现为由false positives,false negatives,true positives和true negatives而组成的两行两列的表格。它允许我们做出除了正确率之外的,更多的分析。
说明一下概念:
真阳性,即 True Positive(TP): 真实为0.预测也为0
真阴性,即 False Negative(FN): 真实为0.预测为1
假阳性 ,即False Positive(FP): 真实为1.预测为0
假阴性,即 True Negative(TN): 真实为1.预测也为1
混淆矩阵延伸出的各个评价指标:
1.正确率(Accuracy):被正确分类的样本比例或数量
Accuracy=(TP+TN)/Total
2.错误率(Misclassification/Error Rate):被错误分类的样本比例或数量
Misclassification/Error Rate)=(FP+FN)/Total
3.真阳率(True Positive Rate)也叫敏感度(sensitivity)或召回率(recall):分类器预测为正例的样本占实际正例样本数量的比例,描述了分类器对正例类别的敏感程度。
True Positive Rate=TP/ actual yes
4.假阳率(False Positive Rate):分类器预测为正例的样本占实际负例样本数量的比例。
False Positive Rate=FP/actual no
5.特异性(Specificity):真实为1的准确率
Specificity=TN/actual no
6. 精度(Precision):在所有判别为正例的结果中,真正正例所占的比例,即预测为0的准确率。
Precision=TP/predicted yes
7.流行程度(Prevalence):正例在样本中所占比例。
Prevalence=Actual Yes/Total
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14