京公网安备 11010802034615号
经营许可证编号:京B2-20210330
小编常说,不会数据分析的小编不是好运营。想小编区区一介小编,是运营环节最不起眼的人了,编文章是应该最主要工作,可是现在除了写文章,小编还要策划活动,对接社群,平时还得自己修修图啥的,让小编心烦的就是每周、月底、年底的数据统计和分析,往往要熬好几个通宵。这不最近领导找小编谈话了,说小编在工作是无用功,应该用科学的数据分析的方法去运营。我.......
为了避免重蹈的覆辙,小编决定奋发图强,去看看到底什么是数据分析,有哪些好用的数据方法。
下面就是小编整理了几种搜集到的运营er常用的数据分析方法,大家可以先了解一下。
01细分分析
细分分析是分析的基础,单一维度下的指标数据的信息价值很低。
细分方法可以分为两类, 一类逐步分析, 根据分析要求由粗到细、由浅入深,逐步进行细分的过程。另一类是维度交叉,立体分析方法,从交叉、立体的角度出发,由低级到高级的一种分析方法。
02对比分析
对比分析主要是指将两个相互联系的指标数据进行比较,从数量上展示和说明研究对象的规模大小,水平高低,速度快慢等相对数值, 通过对相同维度下指标的对比,能够发现并找出业务不同阶段存在的问题。
常见的对比方法包括: 时间对比,空间对比,标准对比。
03漏斗分析
转化漏斗分析是业务分析的基本模型, 就是抽象产品中的某一流程,观察流程中每一步的转化与流失。最常见的是把最终的转化设置为某种目的的实现,最典型的就是完成交易。
漏斗帮助我们解决两方面的问题:
过程中是否发生泄漏,如果有泄漏,我们能在漏斗中看到,并且能够通过进一步的分析堵住这个泄漏点。
过程中是否出现了其他不应该出现的过程,造成转化主进程收到损害。
04用户分析
用户分析是互联网运营的核心,常用的包括:活跃分析,留存分析,用户分群,用户画像,用户细查等。
05AB测试
简单来说,就是为同一个目标制定两个方案(比如两个页面),让一部分用户使用A方案,另一部分用户使用B方案,记录下用户的使用情况,看哪个方案更符合设计目标。
06埋点分析
运营中经常用到的数据采集方法,只有采集了足够的基础数据,才能通过各种分析方法得到需要的分析结果。埋点采集方法一般分为两种,可视化埋点和代码埋点。
07聚类分析
在用户行为分析上,大量用户都有相同或相近的行为属性,我们可以通过行为对用户进行聚类,提取行为特征,对不同行为属性的用户针对性精准运营。
以上就是小编搜集整理的7种运营中可能会用到的数据分析方法,只是一些理论性东西,运营er需要结合自己的工作实际选择合适的数据分析方法。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04