
echarts是一个纯JavaScript图表库,底层依赖于轻量级的Canvas类库ZRender(矢量图形库),基于BSD开原协议,是一款非常优秀的可视化前端框架。
优点:
1.免费商用
2.兼容当前绝大部分浏览器,包括:IE8/9/10/11.Chrome,Firefox,Safari等,及兼容多种设备,可随心所欲进行可视化展示。
3.丰富的可视化类型:涵盖各行业图表,包括常规的折线图、柱状图、散点图、饼图、K线图以及用于统计的盒形图,用于地理数据可视化的地图、热力图、线图,用于关系数据可视化的4.关系图、treemap、旭日图,多维数据可视化的平行坐标,还有用于BI的漏斗图,仪表盘,并且支持图与图之间的混搭。
5.多种数据格式无需转换直接使用:内置的dataset属性(4.0+)支持直接传入包括二维表,key-value等多种格式的数据源,TypedArray格式的数据也能够支持
6.千万数据的前端展现:通过增量渲染技术(4.0+),配合各种细致的优化,ECharts能够展现千万级的数据量。
7.流畅的运行在PC和移动设备上:针对移动端交互做了细致的优化,手指能在移动端小屏上进行坐标系的缩放、平移等操作。PC端也可以用鼠标在图中进行缩放(用鼠标滚轮)、平移等。
8.多种渲染方案,支持跨平台使用:支持以Canvas、SVG(4.0+)、VML的形式渲染图表。
9.深度的交互式数据探索:提供了图例、视觉映射、数据区域缩放、tooltip、数据刷选等开箱即用的交互组件,可以对数据进行多维度数据筛取、视图缩放、展示细节等交互操作。
10.支持多维数据以及视觉编码手段多样:即使是传统的散点图等,也可以多维度传入数据。
11.动态数据:数据的改变驱动图表展现的改变。
12.绚丽的可视化效果:针对线数据,点数据等地理数据的可视化提供了非常具有吸引力的,酷炫的可视化效果。
13.通过GL实现更多更强大绚丽的三维可视化:在VR,大屏场景里实现三维的可视化效果。
14.无障碍访问(4.0+):能够根据图表配置项智能生成描述,即使是盲人也能凭借朗读设备的帮助,了解图表内容,让更多人群能够无障碍访问。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10