
因果推断(causalinference),缘起人类的本能或经常自发提出的一个简单问题:为什么(why)?事实上,作为科学研究的核心与宗旨——因果推断就是关于此问题的严肃思考、科学验证或因果分析(causal analysis)。目前,因果推断模型与方法受到了经济学、金融学、社会学、管理学、人口学及公共卫生等领域的重视和青睐,并成为实证研究的核心利器。但因果推断并非轻而易举之事,正如约翰・杜威(John Dewey)所述,“科学的法则与规律,并不位于自然界的表层,而是隐藏在暗处,我们必须主动利用精心设计的探索技巧把它们从自然中剥离出来。”
为此,我们邀请了我国量化分析及实证研究的著名大咖、中央财经大学的王存同教授与大家分享因果推断的基本概念、主要模型和 Stata 实现方法。
研讨会概要
会议时间:2020年7月25-27日(三天)
会议方式:远程直播,提供三天录播回放
会议安排:9:00-12:00. 14:00-17:00. 研讨
会议详情:http://www.peixun.net/view/1661.html
嘉宾简介
王存同老师
人口学博士,中央财经大学教授。
博士毕业于北京大学(与 University of Michigan 合作培养),博士后研究员就职于美国伊利诺伊大学(University of Illinois at Urbana-Champaign)。主要从事社会统计及计量经济分析、人口健康学等领域的研究与教学。2013年入选教育部新世纪优秀人才计划,兼任北京大学社会科学方法培训教授、美国PAA、国际IUSSP会员及IUSSP 社会科学定量方法培训专家组成员、美国伊利诺伊大学合作研究员及中国青少年性健康教育委员会副主任委员等。曾在《中国社会科学》《社会学研究》,ChineseSociological Review, Schizophrenia Research 等期刊发表论文近百篇,出版著作6 部;主持国家社科基金项目2 项、横向课题 12 项。
小插曲:
王存同教授长期兼任北京大学等多个高校社会科学方法的培训教授,授课生动活泼,通俗易懂,拥有众多粉丝。每逢王老师在中央财经大学沙河校区(距市区约2小时地铁的距离) 开讲时,小伙伴们便像候鸟般赶赴沙河。每次上课总是座无虚席,或席地而坐、或背墙而立......若想在教室前排的过道台阶上抢个位置,那可是要早早出动的。
报名咨询
尹老师
电话:010-53352991
QQ:42884447
邮箱:yinna@pinggu.org
WeChat:yinyinan888
专题概况
因果推断模型与方法是现代社会科学研究者利用计量模型发表高水平实证论文的核心利器。《从线性回归走向因果推断》(From Linear Regression to CausalInference)专题讨论会,重在讨论如何利用Stata软件进行因果推断。在专题讨论与演示中,将因果推断模型与统计软件的应用与操作有机结合,力图与大家在较短时间内分享因果推断的基本思想、原理、模型、方法及适用范围,并以真实数据为演示案例,与大家分享因果推断的思辨、模型构建、软件应用及结果解读的能力,为发表高水平的实证研究论文奠定基础。
在专题讨论的内容安排上,基于对线性回归模型核心内容及计量建模方法、原则的回顾,将利用大量篇幅讨论因果推断的基本概念、思想、原理、方法及模型应用。
专题讨论特色
1、专题讨论定位明确。该专题讨论并非专业数理统计学教学或计量培训课程,不会出现烦琐的公式推导。专题讨论重在应用,即在基本熟悉因果推断思想的基础上,进行数据分析、软件应用及模型解读,实现理论与应用的结合。
2、讨论重点突出。讨论因果推断原理及主流模型时,重点关注基本统计思想及应用范围、条件、数据处理难点及模型参数的解读。
3、内容细致实用。应用Stata软件来加强与实现因果推断模型、方法的分享与讨论,各专题都附带完整的Stata实现过程(do文档)和真实数据,大家无需进行烦琐编程,即可快速实现数据分析及建模任务。
4、在线参与沟通。大家可自带数据运行,并在线答疑。
5、论文经验分享。与大家分享定量研究论文写作、投稿、修改,以及与编辑部、导师和合作者沟通的实用技巧。
6、嘉宾风格鲜明。专题讨论嘉宾认真敬业,讲课风趣幽默,引人入胜,有强大的人格魅力,感染力极强,屡屡被学生评为计量教学“人气最佳”的教授,为全国学生最受欢迎的计量模型教学的教师之一。他多年在北京大学等高校主讲社会科学定量方法暑期培训专题讨论,多名学生评价其“统计专题讨论如小说般引人入胜,不忍下课”、“讲解系统且实用性强”,已有多名学生成功应用所学发表高水平量化论文若干。
专题内容
本专题讨论主要涵盖如下六个专题(每讲3个小时)。在讲解每个模型时,都将结合完整的 Stata 实现文档与学员共同进行实例操作,并提供完整的 .dta, .do 文档等资料,以便大家演练和应用。
各讲主要内容及参考文献列举如下:
专题1 多元回归与建模原则
作为因果推断的基础——多元回归
基本假定与计量模型的脉络及发展
计量建模原则与分析策略
案例与Stata操作
专题2~3 因果推断:工具变量回归(Instrument variable, IV)
内生性问题与解决路径
工具变量选择的方法及分类
工具变量的检验
工具变量回归模型(2SLS+GMM)
案例与Stata操作
专题4-6 因果推断:常用方法与模型
回归模型与因果解释
尤尔-辛普森悖论
Rubin因果模型(Rubin Causal Model, RCM)
决策理论因果模型(decision-theoretic causality)
因果图(Causal Diagram: DAGs)
格兰杰因果关系检验(Granger causality test)
双重差分估计(difference in differences estimate, DID)
倾向值匹配法(propensity score matching, PSM)
固定效应模型(fixed effect model, FEM)
随机效应模型(random effect model, REM)
断点回归设计(regression discontinuity design, RDD)
案例与与Stata操作
专题读物
Angrist, J. D., &Pischke, J. S. (2008). Mostly Harmless Econometrics: An Empiricist's Companion.Princeton university press.
Cameron, A. C., &Trivedi, P. K. (2005). Micro-econometrics: Methods and Applications.Cambridge university press.
Greene, W. H. (2011).Econometric Analysis (7th). Prentice Hall.
Imbens, G. W., &Rubin, D. B. (2015). Causal Inference in Statistics, Social, and Biomedicalsciences. Cambridge University Press.
Morgan, S. L., &Winship, C. (2007). Counterfactuals and Causal Inference: Methods andPrinciples for Social Research. New York, NY. Cambridge University Press.
Pearl, J. (2009). Causality:Models, Reasoning, and Inference (2nd). New York: Cambridge UniversityPress.
Pearl, J., &Mackenzie, D. (2018). The Book of Why: the New Science of Cause and Effect.CITIC press.
研讨会费用
3600元/3200元(学生优惠价仅限全日制本科及硕士在读)
提供“会议费”发票及会议通知(电子版和纸质版)
优惠信息
1、经管之家学术班老学员9折优惠(含专题课学员);
2、王存同老师老学员8折优惠;
3、2人同行9折优惠;
4、3人及以上同行8折优惠。
(以上优惠不叠加)
报名咨询
尹老师
电话:010-53352991
QQ:42884447
邮箱:yinna@pinggu.org
WeChat:yinyinan888
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14