
最近数据分析行业大火,数据分析师更是被称为,“未来最具发展潜力的职业之一”,数据分析人员的前途可以说是一片光明。但是,近几年人工智能也在快速发展,有科学家预测,未来社会上有50%的职业会在十年内被人工智能所代替,尤其是一些具有重复性质的劳动在未来都会由计算机来完成。因此,很多想要入行数据分析或者已经入行的小伙伴都在担心,自己的工作将来会不会被人工智能取代,早早失业下岗。
人工智能作为一门计算科学,它所做的事就是从过去的事物之间找到一定的规律,并以此来确定当下自己面临的事应该如何去做,因此对于重复性高的工作,人工智能很容易就能替代。但是数据分析师是谁,是不同行业中,专门从事行业数据搜集、整理、分析,并依据数据做出行业研究、评估和预测的专业人员。数据分析师的工作的核心不在于数据而是帮助企业做诊断去发现问题实现再增长。
当然随着人工智能的发展,数据分析师可能有一部分重复性的工作被人工智能所代替,但是对于诊断和决策部分是不可能被代替的。所以小编建议,数据分析师平时要多加强对于业务的理解,只有深刻理解我们的业务,我们才能在这多个因素之间快速定位到问题的根本原因,并产出解决的方案,为企业的下一步动作进行决策支持。另外,还需要加强自己的沟通和交流能力,多于销售、开发、产品等部门沟通更加全面了解自己的产品,多与用户沟通,了解用户行为,以实现更好的转化。
综上所述,数据分析师要想不被人工智能取代,就得不断提高自己,加强业务理解能力和沟通能力,但这并不意味着,数据分析师就可以忽视技术部能力,就当下数据分析师的要求来说,技术能力还是占有很大比重的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02