
以下使用scikit-learn中数据集进行分享。
如果选用随机森林作为最终的模型,那么找出它的最佳参数可能有1000多种组合的可能,你可以使用使用穷尽的网格搜索(Exhaustive Grid Seaarch)方法,但时间成本将会很高(运行很久...),或者使用随机搜索(Randomized Search)方法,仅分析超参数集合中的子集合。
该例子以手写数据集为例,使用支持向量机的方法对数据进行建模,然后调用scikit-learn中validation_surve方法将模型交叉验证的结果进行可视化。需要注意的是,在使用validation_curve方法时,只能验证一个超参数与模型训练集和验证集得分的关系(即二维的可视化),而不能实现多参数与得分间关系的可视化。以下搜索的参数是gamma,需要给定参数范围,用param_range进行传递,评分策略用scoring参数进行传递。其代码示例如下所示:
print(__doc__) import matplotlib.pyplot as plt import numpy as np from sklearn.datasets import load_digits from sklearn.svm import SVC from sklearn.model_selection import validation_curve X, y = load_digits(return_X_y=True) param_range = np.logspace(-6, -1, 5) train_scores, test_scores = validation_curve( SVC(), X, y, param_name="gamma", param_range=param_range, scoring="accuracy", n_jobs=1) train_scores_mean = np.mean(train_scores, axis=1) train_scores_std = np.std(train_scores, axis=1) test_scores_mean = np.mean(test_scores, axis=1) test_scores_std = np.std(test_scores, axis=1) plt.title("Validation Curve with SVM") plt.xlabel(r"$\gamma$") plt.ylabel("Score") plt.ylim(0.0, 1.1) lw = 2 plt.semilogx(param_range, train_scores_mean, label="Training score", color="darkorange", lw=lw) plt.fill_between(param_range, train_scores_mean - train_scores_std, train_scores_mean + train_scores_std, alpha=0.2, color="darkorange", lw=lw) plt.semilogx(param_range, test_scores_mean, label="Cross-validation score", color="navy", lw=lw) plt.fill_between(param_range, test_scores_mean - test_scores_std, test_scores_mean + test_scores_std, alpha=0.2, color="navy", lw=lw) plt.legend(loc="best") plt.show();
代码中:
X, y = load_digits(return_X_y=True) # 等价于 digits = load_digits() X_digits = digits.data y_digits = digits.target
以下是支持向量机的验证曲线,调节的超参数gamma共有5个值,每一个点的分数是五折交叉验证(cv=5)的均值。
当想看模型多个超参数与模型评分之间的关系时,使用scikit-learn中validation curve就难以实现,因此可以考虑绘制三维坐标图。
主要用plotly的库绘制3D Scatter(3d散点图)。以下的例子使用scikit-learn中的莺尾花的数据集(iris)。以下例子选用随机森林模型(RandomForestRegressor),利用scikit-learn中的GridSearchCV方法调试最佳超参(tuning hyper-parameters),分别设置超参数"n_estimators","max_features","min_samples_split"的参数范围,详见代码如下:
import numpy as np from sklearn.model_selection import validation_curve from sklearn.datasets import load_iris from sklearn.ensemble import RandomForestRegressor from plotly.offline import iplot from plotly.graph_objs as go model = RandomForestRegressor(n_jobs=-1, random_state=2, verbose=2) grid = {'n_estimators': [10,110,200], 'max_features': [0.05, 0.07, 0.09, 0.11, 0.13], 'min_samples_split': [2, 3, 5, 8]} rf_gridsearch = GridSearchCV(estimator=model, param_grid=grid, n_jobs=4, cv=5, verbose=2, return_train_score=True) rf_gridsearch.fit(X, y) # and after some hours... df_gridsearch = pd.DataFrame(rf_gridsearch.cv_results_) trace = go.Scatter3d( x=df_gridsearch['param_max_features'], y=df_gridsearch['param_n_estimators'], z=df_gridsearch['param_min_samples_split'], mode='markers', marker=dict( # size=df_gridsearch.mean_fit_time ** (1 / 3), size = 10, color=df_gridsearch.mean_test_score, opacity=0.99, colorscale='Viridis', colorbar=dict(title = 'Test score'), line=dict(color='rgb(140, 140, 170)'), ), text=df_gridsearch.Text, hoverinfo='text' ) data = [trace] layout = go.Layout( title='3D visualization of the grid search results', margin=dict( l=30, r=30, b=30, t=30 ), scene = dict( xaxis = dict( title='max_features', nticks=10 ), yaxis = dict( title='n_estimators', ), zaxis = dict( title='min_samples_split', ), ), ) fig = go.Figure(data=data, layout=layout) iplot(fig)
其运行结果如果,是一个三维散点图(3D Scatter)。
可以看到颜色越浅,分数越高。n_estimators(子估计器)越多,分数越高,max_features的变化对模型分数的影响较小,在图中看不到变化,min_samples_split的个数并不是越高越好,但与模型分数并不呈单调关系,在min_samples_split取2时(此时,其它条件不变),模型分数最高。
除了使用scikit-learn中validation curve绘制超参数与得分的可视化,还可以利用seaborn库中heatmap方法来实现两个超参数之间的关系图,如下代码示例:
import seaborn as sns title = '''Maximum R2 score on test set VS max_features, min_samples_split''' sns.heatmap(max_scores.mean_test_score, annot=True, fmt='.4g'); plt.title(title); plt.savefig("heatmap_test.png", dpi = 300);
import seaborn as sns title = '''Maximum R2 score on train set VS max_features, min_samples_split''' sns.heatmap(max_scores.mean_train_score, annot=True, fmt='.4g'); plt.title(title); plt.savefig("heatmap_train.png", dpi = 300);
max_features和min_samples与模型得分关系的可视化如下图所示(分别为网格搜索中测试集和训练集的得分):
由于一般人很难迅速的在大量数据中找到隐藏的关系,因此,可以考虑绘图,将数据关系以图表的形式,清晰的显现出来。
综上,当关注单个超参数的学习曲线时,可以使用scikit-learn中validation curve,找到拐点,作为模型的最佳参数。
当关注两个超参数的共同变化对模型分数的影响时,可以使用seaborn库中的heatmap方法,制作“热图”,以找到超参数协同变化对分数影响的趋势。
当关注三个参数的协同变化与模型得分的关系时,可以使用poltly库中的iplot和go方法,绘制3d散点图(3D Scatter),将其协同变化对模型分数的影响展现在高维图中。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18