京公网安备 11010802034615号
经营许可证编号:京B2-20210330
python散点图:如何添加拟合线并显示拟合方程与R方?我们可以使用polyfit()函数,使用最小二乘法将一些点拟合成一条曲线.
numpy.polyfit(x, y, deg, rcond=None, full=False, w=None, cov=False) # x:要拟合点的横坐标 # y:要拟合点的纵坐标 # deg:自由度.例如:自由度为2,那么拟合出来的曲线就是二次函数,自由度是3,拟合出来的曲线就是3次函数
# 解决坐标轴刻度负号乱码 plt.rcParams['axes.unicode_minus'] = False # 解决中文乱码问题 plt.rcParams['font.sans-serif'] = ['Simhei'] import numpy as np import matplotlib.pyplot as plt x = np.arange(-1, 1, 0.02) y = 2 * np.sin(x * 2.3) + np.random.rand(len(x))
然后打印一下看看
plt.scatter(x, y) plt.show()
parameter = np.polyfit(x, y, 3)
y2 = parameter[0] * x ** 3 + parameter[1] * x ** 2 + parameter[2] * x + parameter[3]
将拟合后的结果打印一下
plt.scatter(x, y) plt.plot(x, y2, color='g') plt.show()
p = np.poly1d(parameter) plt.scatter(x, y) plt.plot(x, p(x), color='g') plt.show()
二维散点进行任意函数的最小二乘拟合
最小二乘中相关系数与R方的关系推导
其中,
利用相关系数矩阵计算R方
correlation = np.corrcoef(y, y2)[0,1] #相关系数 correlation**2 #R方
p = np.poly1d(parameter,variable='x') print(p)
这里是把结果输出到两行里了,但是输出到两行是非常不方便的
parameter=[-2.44919641, -0.01856314, 4.12010434, 0.47296566] #系数
aa=''
deg=3
for i in range(deg+1):
bb=round(parameter[i],2) #bb是i次项系数
if bb>=0:
if i==0:
bb=str(bb)
else:
bb=' +'+str(bb)
else:
bb=' '+str(bb)
if deg==i:
aa=aa+bb
else:
aa=aa+bb+'x^'+str(deg-i)
print(aa)
def Curve_Fitting(x,y,deg):
parameter = np.polyfit(x, y, deg) #拟合deg次多项式
p = np.poly1d(parameter) #拟合deg次多项式
aa='' #方程拼接 ——————————————————
for i in range(deg+1):
bb=round(parameter[i],2)
if bb>0:
if i==0:
bb=str(bb)
else:
bb='+'+str(bb)
else:
bb=str(bb)
if deg==i:
aa=aa+bb
else:
aa=aa+bb+'x^'+str(deg-i) #方程拼接 ——————————————————
plt.scatter(x, y) #原始数据散点图
plt.plot(x, p(x), color='g') # 画拟合曲线
# plt.text(-1,0,aa,fontdict={'size':'10','color':'b'})
plt.legend([aa,round(np.corrcoef(y, p(x))[0,1]**2,2)]) #拼接好的方程和R方放到图例
plt.show()
# print('曲线方程为:',aa)
# print(' r^2为:',round(np.corrcoef(y, p(x))[0,1]**2,2))
Curve_Fitting(x,y,3)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01