
python散点图:如何添加拟合线并显示拟合方程与R方?我们可以使用polyfit()函数,使用最小二乘法将一些点拟合成一条曲线.
numpy.polyfit(x, y, deg, rcond=None, full=False, w=None, cov=False) # x:要拟合点的横坐标 # y:要拟合点的纵坐标 # deg:自由度.例如:自由度为2,那么拟合出来的曲线就是二次函数,自由度是3,拟合出来的曲线就是3次函数
# 解决坐标轴刻度负号乱码 plt.rcParams['axes.unicode_minus'] = False # 解决中文乱码问题 plt.rcParams['font.sans-serif'] = ['Simhei'] import numpy as np import matplotlib.pyplot as plt x = np.arange(-1, 1, 0.02) y = 2 * np.sin(x * 2.3) + np.random.rand(len(x))
然后打印一下看看
plt.scatter(x, y) plt.show()
parameter = np.polyfit(x, y, 3)
y2 = parameter[0] * x ** 3 + parameter[1] * x ** 2 + parameter[2] * x + parameter[3]
将拟合后的结果打印一下
plt.scatter(x, y) plt.plot(x, y2, color='g') plt.show()
p = np.poly1d(parameter) plt.scatter(x, y) plt.plot(x, p(x), color='g') plt.show()
二维散点进行任意函数的最小二乘拟合
最小二乘中相关系数与R方的关系推导
其中,
利用相关系数矩阵计算R方
correlation = np.corrcoef(y, y2)[0,1] #相关系数 correlation**2 #R方
p = np.poly1d(parameter,variable='x') print(p)
这里是把结果输出到两行里了,但是输出到两行是非常不方便的
parameter=[-2.44919641, -0.01856314, 4.12010434, 0.47296566] #系数 aa='' deg=3 for i in range(deg+1): bb=round(parameter[i],2) #bb是i次项系数 if bb>=0: if i==0: bb=str(bb) else: bb=' +'+str(bb) else: bb=' '+str(bb) if deg==i: aa=aa+bb else: aa=aa+bb+'x^'+str(deg-i) print(aa)
def Curve_Fitting(x,y,deg): parameter = np.polyfit(x, y, deg) #拟合deg次多项式 p = np.poly1d(parameter) #拟合deg次多项式 aa='' #方程拼接 —————————————————— for i in range(deg+1): bb=round(parameter[i],2) if bb>0: if i==0: bb=str(bb) else: bb='+'+str(bb) else: bb=str(bb) if deg==i: aa=aa+bb else: aa=aa+bb+'x^'+str(deg-i) #方程拼接 —————————————————— plt.scatter(x, y) #原始数据散点图 plt.plot(x, p(x), color='g') # 画拟合曲线 # plt.text(-1,0,aa,fontdict={'size':'10','color':'b'}) plt.legend([aa,round(np.corrcoef(y, p(x))[0,1]**2,2)]) #拼接好的方程和R方放到图例 plt.show() # print('曲线方程为:',aa) # print(' r^2为:',round(np.corrcoef(y, p(x))[0,1]**2,2))
Curve_Fitting(x,y,3)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05