京公网安备 11010802034615号
经营许可证编号:京B2-20210330
这节我们来聊一下用户留存的话题,用户留存有多重要呢?“不留存,就去死”,听起来还是有点耸人听闻的对吧。说到留存,不得不先弄清楚用户画像,所谓“知己知彼,百战不殆!”
很多大佬们往往更关注留存这一环节,那么这一环节有什么奇妙的地方呢?由于这一章内容较多,小P给大家找到了思维导图方便大家理解:
首先,书中关于用户留存举了BranchOut的反例:从2012年1月开始,短短几个月时间里,BranchOut的总用户数增长到2500万,月活跃用户一度达到1400万,并且完成了C轮融资。就是这样一个看起来前景一片大好的社交网站,是怎么最后沦落到到处找买家贱卖的下场呢?
归根结底,就是没有注重用户的留存问题,团队把精力全部放在了用户获取上。其实这样的事情在国内我们也见过不少,很多app都有过声势浩大的阶段,但后来却逐渐消失在我们的视野中。我们去结合产品的“S”曲线就会发现,这类产品在当时巨大的用户增量面前,并不足以承担,并且很可能会对产品造成很大的负担,产品功能及各方面不够匹配这么大的用户量,一味的增长反而会加速产品走向下坡。其实,我们首先要认清一个公式:
净用户增长=新用户加入-老用户流失
这也就意味着我们的流失数最起码要与新用户数保持持平,才会实现增长。然而现实中,很多新人会被眼前的新用户数冲昏头脑,而忘记产品现有功能是否能满足大量用户基本使用需求以及是否能满足小众用户的特殊需求。所以,出现这些问题也就可以理解了。
我们再来定义下留存,女主说:衡量留存,我们推荐使用计算同一用户群不同时间的留存率(Retention rate)来绘制留存曲线(Retention curve),有时候也叫做进行同期群分析(Cohort Analysis)。简而言之,就是把同一时期加入的用户放在一起,横向追踪他们在接下来几个月、一年的时间里,是不是还持续使用这个产品,有多大比例流失了,在什么时间流失了,从而了解用户随时间变化的留存情况。在定义留存这个环节中,首先我们需要明确定义自己产品留存关键行为以及用户的天然使用周期,这样我们就可以着手绘制留存曲线图了。想要画出一个周留存曲线,只需以下四步:
1. 记录每一周首次完成关键行为的用户数,也就是激活用户数。
2. 追踪这些用户在接下来的每一周里继续完成关键行为的数量。
3. 通过前两步,计算每一周有关键行为的用户占首周激活用户数的百分比。
4. 把百分比数据画成曲线图,就是你的留存曲线了。
步骤4
那么,从这个留存曲线当中我们能看出什么呢?
横向观察时:用户的流失是不可避免的,但好的留存曲线应该是变得越来越平
纵向观察时:随着产品的改善,以及各种留存手段的帮助,后来加入的用户其留存曲线的
的斜率应该比之前加入的用户的平缓。
同样,用户留存周期也是分阶段的。
1. 新用户激活阶段:包括新用户的注册、激活流程和整体的新用户体验。这一阶段的主要目标是帮助新用户上手,快速发现产品达到Aha时刻。
2. 中期留存阶段:是指用户完成了首次关键行为之后继续熟系产品,发现更多的价值。主要目标是帮助用户形成使用习惯。
3. 长期留存阶段:这时用户对产品的使用已经非常熟悉,主要目标是让用户经常回来使用产品,感受到产品的核心价值,避免用户的流失。
4. 流失用户阶段:这一阶段是针对已经流失的用户,主要目标是让用户重新发现产品价值,唤回用户。
不同阶段,目标也不同。把握住留存的各个阶段,实操起来才会更轻松。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12