京公网安备 11010802034615号
经营许可证编号:京B2-20210330
接着上文我们来聊一下“用户激活”这个话题,提到用户激活,怎么样的营销决策是好的呢?相信很多同学脑海都浮现一个词,没错,就是“Aha”时刻,用户激活是离不开Aha时刻的。
如何定义它呢?Aha(惊喜)时刻,就是新用户第一次认识到产品的价值,从而脱口说出“啊哈,原来这个产品可以帮我做这个啊”的那个时刻。
这是一个至关重要的时刻,他区分了那些从产品中发现了价值和那些没发现价值的用户。这也是一个“有感情”的时刻,用户觉得他从广告里看到的那些承诺,产品在这一刻都履行了,因此觉得满足甚至感到惊喜。
在这里给大家列举了几个知名产品的Aha时刻:
通过这些例子,大家不难发现定义Aha时刻的一些规律——那就是清晰、具体、可衡量,并且发生在用户体验的较早期,以及符合下面的描述:
(谁)在(多长时间内)完成(多少次)(什么行为)
不难看出,要找到以上信息来定义Aha时刻,需要三步:
第一步,定义一个关键行为;
第二步,找到关键行为的完成者;
第三步,需要明确规定在早期多长的时间内?并且在这段时间内用户需要完成多少次关键行为?
举个例子,对于各大社交网站如Facebook、Twitter来说这个关键行为是建立社交关系;对于企业软件Slack而言则是其核心功能:发送信息。让新用户通过采取某个特点行为迅速了解产品的价值所在,到达Aha时刻,这个行为就叫做“关键行为”。但是,每个产品的关键行为不同,要具体分析。小伙伴们可以带入性的来思考一下这几个问题:
1. 你希望用户每次使用产品时都做的行为是什么?
2. 用户做出了哪个行为更有可能长期留存下来?
3. 哪个指标是整个公司最在意的?哪个指标是你最希望提升的?哪些用户行为直接影响了这个指标?
4. 你有几个不同产品或者功能吗?他们都分别是什么?每个产品或者功能的成功指标是什么?和哪些用户行为相关?
通过以上问题找到了一些方向之后,我们要做的就是通过下面4步确认关键行为。
第一步,列出可能的关键指标;
第二步,通过数据分析筛选关键行为;
第三步,通过定性用户调研进一步确认关键行为;
第四步,找到关键行为和Aha时刻
那么,在了解新用户引导方面的激动指数时,我们首先要明确用户的初始激动指数,这个指数通常来自于品牌,广告设计和来源投放;其次,了解各个元素对激动指数的影响;最后,综合审计新用户激活漏斗的各个环节。
通过前面讲的内容,我们明确了新用户激活的重要性,知道了新用户激活的重要性,知道了如何找到Aha时刻,衡量新用户激活该采用哪些指标,下面我们通过一些具体的案例,介绍用户引导的四大原则和需要避免的八大误区。
原则一:增强动力。Uber的用户推荐流程巧妙利用推荐人的社会信任。
原则二:减少障碍。每一个障碍,用户都会消耗能量,其激动指数都会下降一点点。
原则三:适时助推。
原则四:私人订制。用户的偏好不同、背景不同、使用产品的目的不同,“千人一面”的新用户引导很可能不能满足每个用户的需求,这是需要引导个人化,最大化的满足用户需求,提高激活率。以下是几个成功案例:
除了四大原则外,在建立新用户引导流程时还应该注意避免下面的八大误区。
第一, 新用户注册和引导步骤太多,流程太长;
第二, 没有聚焦到一个关键行为上,想让新用户做的事情太多;
第三, 花太多时间教用户怎么做界面,而没有让用户使用产品;
第四, 让用户太快完成设置,没有给予足够的教育;
第五, 新用户注册太顺利了,没有设置必要的障碍筛选掉不合格的用户;
第六, 以“注册完成”为衡量新用户引导的标准,而不是“用户激活”;
第七, 对每个用户都统一对待;
第八, (最重要一点)完全照抄以上介绍的最佳实践,而不进行A/B测试。对于不了解A/B测试的同学可以关注小P的下一篇简读哟~讲解王晔老师的A/B测试。
写在最后:新用户激活是一个系统的工程,需要多个团队的参与、多个渠道的配合,并且不限于新用户注册的第一天,而是要延续到首周、首月,甚至是更长的时间段。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27