
matplotlib环形图是饼图衍生出来的统计图形,可以看作是两个以上饼图的叠合。环形图与饼图类似,其实是有差别的。饼图是用圆形及圆内扇形的面积来表示数值大小的图形,主要用于表示总体中各组成部分所占的比例。与之对比,环形图中间留有空白,可以用多个环展示多个样本,既可以表示每个样本中各部分的占比,又可以对多个样本的结构同时进行对比。
文字表达永远没有图片来的直观,从网上随便搜了一个环形图先简单感受下:
上边的环形图只有一个环,实际上可以根据需要绘制多个环嵌套在一起的环形图,并且也可以加上每一段弧形所占的比例,我们先从简单的开始,绘制一个简单的环形图。
先看下数据源长什么样子,依然是绘制饼图时用到的数据:
所谓环形图,其实用到的依然是绘制饼图的函数,只是对其中的参数进行设置后形成环形图,我们先来绘制一个简单的第一小学成绩环形图:
plt.figure(figsize=(8,8)) #新建画布,画布大小为8*8 plt.pie(data2.iloc[0,1:] #截取第一小学的成绩 ,radius=1 # 设置半径为1 ,labels=['语文','数学','英语'] #设置各个角的标签 ,autopct='%.2f%%' #设置精度为小数点后两位 ,textprops={'fontsize': 14, 'color': 'k'} #设置标签字体和颜色 ,wedgeprops=dict(width=0.4, edgecolor='w')); #设置饼弧宽度和边框颜色
和之前绘制饼图不同的是多设置了三个参数,一个是设置半径,一个是设置字体和颜色(介绍饼图的文章中饼图中字体有点小,颜色是默认的黑色,其实字体大小和颜色都是可以设置的),最后一个是设置弧度宽度和边框颜色,所谓弧度的宽度其实就是环形的宽度。
来看下效果:
像这种简单的环形图,作用和饼图差不多,只能反映一个小学的成绩情况,如果想要查看两个学校对比的情况需要绘制两个图,当然环形图可以解决这个问题,下边我们来看下升级版的环形图!
以绘制两个环形为例:
plt.figure(figsize=(8,8)) #新建画布,画布大小为8*8 plt.pie(data2.iloc[0,1:] #截取第一小学的成绩 ,radius=1 # 设置半径为1 ,labels=['语文','数学','英语'] #设置各个角的标签 ,autopct='%.2f%%' #设置精度为小数点后两位 ,textprops={'fontsize': 14, 'color': 'k'} #设置标签字体和颜色 ,wedgeprops=dict(width=0.4, edgecolor='w')) #设置饼弧宽度和边框颜色 plt.pie(data2.iloc[1,1:] #截取第二小学的成绩 ,radius=0.6 # 设置半径为0.6 ,autopct='%.2f%%'#设置精度为小数点后两位 ,textprops={'fontsize': 12, 'color': 'w'}#设置标签字体和颜色 ,wedgeprops=dict(width=0.4, edgecolor='w'));#设置饼弧宽度和边框颜色
以前的文章提到过,可以在同一块画布上重复绘图,在绘制堆积条形图的时候用到的就是这个知识点,绘制多个环的环形图也是相同的道理。
在同一块画布上绘制两个环,一个大环一个小环,需要注意的是要先绘制大环,后绘制小环,因为后绘制的图会覆盖先绘制的图,所以我们设置第一个环的半径是1,后边绘制的环半径是0.6,来看下效果:
喏,就是这个效果了,这个图还缺少一个标题,相信大家都知道如何添加图形标题了。
当然这个环形图中的两个环挨在一起了,平时我们看到的环形图每个环之间会有一点间隙,能够很明显的看出是两个分离的环,其实这个也不难!仔细观察上边的代码,两个环之间的半径差是0.4,而我们对弧形宽度也设置的是0.4,所以两个环之间一点缝隙都没有,通过对这两个参数的设置就可以控制两个环之间的距离了。
plt.figure(figsize=(8,8)) plt.pie(data2.iloc[0,1:] ,radius=1 ,labels=['语文','数学','英语'] ,autopct='%.2f%%' ,textprops={'fontsize': 14, 'color': 'k'} ,wedgeprops=dict(width=0.3, edgecolor='w')) plt.pie(data2.iloc[1,1:] ,radius=0.6 ,autopct='%.2f%%' ,textprops={'fontsize': 14, 'color': 'k'} ,wedgeprops=dict(width=0.3, edgecolor='w')) plt.title("第一小学(外环)和第二小学(内环)成绩图");
两个环形的半径差没有变,依然是0.4,我们把弧形宽度改成了0.3,来看下效果:
这样是不是就变成大家心目中环形图的样子了(我又偷偷的加上标题了)?这是两个学校的成绩环形图,如果想要多画几个环,记得把半径差设置大一点,弧形宽度设置小一点,能够容纳多个环形就可以啦!
你学会了吗?matplotlib是不是很强大的赶脚!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01