京公网安备 11010802034615号
经营许可证编号:京B2-20210330
前两篇文章介绍了几种常见的条形图,实际上看起来简单的条形图可探索的设置还有很多!在体育赛事中,经常出现一种对称条形图,比如对比两个热门选手或者队伍在各方面的打分情况等,这也是在普通横向条形图的基础上绘制出来的,作为无所不能的python,当然也是可以绘制这种图形的!
闲话少叙,直接上代码吧!
df = pd.read_excel(r"D:\data\football\曼城vs利物浦.xlsx") df
这是从英超历年球队积分的数据中截取出来的曼城和利物浦两支球队的数据,制作一个对称条形图,查看这两只球队在2010–2019年的积分表现。
这是原数据,单看表格对比不是很明显,来画一个对称条形图试试看:
plt.figure(figsize=(10,6))
ax = plt.gca() #获取坐标轴对象
ax.spines['right'].set_color('none') #把右边的边框颜色设置为无色,隐藏右边框
ax.spines['top'].set_color('none') #把上边的边框颜色设置为无色,隐藏上边框
ax.spines['bottom'].set_color('none') #把上边的边框颜色设置为无色,隐藏上边框
ax.yaxis.set_ticks_position('left') #指定左边的边为 y 轴
ax.spines['left'].set_position(('data', 0)) #指定 data 设置的left(也就是指定的y轴)绑定到x轴的0这个点上
plt.xticks([]) #去掉x轴刻度
plt.yticks(df.iloc[:,0].tolist()) #设置y轴刻度为年份
#绘制利物浦队的条形图,颜色用默认的蓝色
plt.barh(df.iloc[:,0],df.iloc[:,1], height=0.5,label = "利物浦")
#绘制曼城队的条形图,需要在y轴的两侧显示条形,所以曼城队的数据取负数,设置颜色为粉色
plt.barh(df.iloc[:,0],-df.iloc[:,2],height=0.5,label = "曼城",color = "pink")
#通过循环为曼城队的每个横向条形加标签,标签位置在对应条形的顶端,内容为球队当年的积分
for i,j in zip(range(len(df)),[2010,2011,2012,2013,2014,2015,2016,2017,2018,2019]):
plt.text(-df.iloc[:,2][i]-5,j,df.iloc[:,2][i])
#通过循环为利物浦队的每个横向条形加标签,标签位置在对应条形的顶端,内容为球队当年的积分
for i,j in zip(range(len(df)),[2010,2011,2012,2013,2014,2015,2016,2017,2018,2019]):
plt.text(df.iloc[:,1][i]+1,j,df.iloc[:,1][i])
plt.legend(loc = 4); #显示图例,loc参数指定图例位置在右下角
请看效果图:
是不是比看上边的表格要清晰和容易多了,一眼就能看出每一年两个球队的积分对比情况,整体看来曼城队是强于利物浦队的,至于那个异常的2019年数据,不是全年的数据,所以和其他年份数据差异很大。
对称条形图一般只能对比两个个体之间的各项指标数据,如果涉及多个个体,对称条形图就不怎么好用了。有另一种图可以同时展示多个个体的情况,就是发散型条形图!但是它本身也是有限制的,发散型条形图只能展示在某一个指标上多个个体的不同,而对称条形图是展示两个个体在多个指标上的对比,所以在实际应用中需要区分好需要实现的是什么。
到底是什么样的情况,我们还是直接上代码看图片吧:
df_yc = pd.read_excel(r"D:\data\football\球队排名比分2019.xlsx") df_yc.head(10) #查看前十条数据
这是英超2019年个球队的积分数据:
这是所有球队中在2019年积分排名前十的球队信息,绘图的时候所有球队的数据都会包含。
虽然发散型条形图形式和对称条形图类似,条形都是像两个互为相反的方向延申,然而两者还是有一些不同,对称条形图直接在其中一类数据直接取负数,而发散型条形图是在所有数据上都减掉了整体数据的均值,这样大于均值的数据依然为正,而低于均值的数据就会变成负数:
df_yc.积分.mean() #求所有球队的平均积分
df_yc.积分 = df_yc.积分 - df_yc.积分.mean() #所有球队的积分减掉均值
df_yc.sort_values("积分", inplace=True) #依据减掉均值后的积分进行升序排序
df_yc.head(10) #查看最新的前十条数据
由于条形图在绘制过程中是先从最下边开始画,我们希望最小的数值被画在最下边,由下到上升序排序,所以原数据要进行升序排序。
到这里其实什么都不用设置就可以直接出图了(做个心理建设,直接出的图有点丑):
plt.barh(y =df_yc.iloc[:,0],width=df_yc.iloc[:,1],height=0.3 ,color = colors,alpha=0.5);
是不是和曾经见过的发散型条形图长的差不多,除了丑一点。下边来进行一些完善,美化图形。
完善后的代码可就多了很多呢,具体如下:
plt.figure(figsize=(12,8)) #新建画布,尺寸为12*8
colors = [] #指定条形颜色
for i in df_yc.iloc[:,1]:
if i > 0:
colors.append("g") #超过均值的数值为绿色
else:
colors.append("r") #低于均值的数值为红色
#绘制横向条形图,设置条形透明度为0.5,降低色彩饱和度,看起来更舒服一些
plt.barh(y =df_yc.iloc[:,0],width=df_yc.iloc[:,1],height=0.3 ,color = colors,alpha=0.5)
pos = [] #指定要添加文本的x轴位置
for i in df_yc.iloc[:,1]:
if i > 0:
pos.append(i+0.5) #如果数值高于均值,文本在x轴的位置超过条形顶端0.5的距离
else:
pos.append(i- 0.5)#如果数值低于均值,文本在x轴的位置小于条形顶端0.5的距离
for i in range(len(df_yc)): #通过循环为每个条形添加标签值
if pos[i] > 0: #plt.text(x轴方向位置,y轴方向位置,添加的文本信息)
plt.text(x = pos[i]+0.5,y = i,s = round(df_yc.iloc[:,1].iloc[i],2))
else:
plt.text(x = pos[i]-2,y = i,s = round(df_yc.iloc[:,1].iloc[i],2))
plt.title("2019英超各球队积分排名图(积分均值为30.25)")
plt.grid(linestyle='--', alpha=0.5); #配置网格线
效果图:
是不是好看了很多,其实就是设置了画布大小,让整个图看起来不那么局促;然后控制条形的上下宽度,再加上标签方便查看每个条形的数据以及加了网格线,看起来就高大上了许多。
这个图很明显能看出英超球队积分参差不齐,没过均线的球队数量几乎是均线上球队数量的两倍,这也说明了好的球队特别好,把均线拉高了,差的球队数量很多,但是水平倒没有差的太离谱;整体来说还是好的球队更厉害,最好的超均线30分,最差的球队也只低于均线16分。
(本人一点都不懂足球,仅仅从2019年的数据中得到的一点点分析结果,之所以选择英超数据单纯的因为体育数据更容易得到一点而已,所以如果分析的不好,还请轻拍。)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29