京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R语言dplyr包主要用于数据清洗和整理,主要功能有:行选择、列选择、统计汇总、窗口函数、数据框交集等是非常高效、友好的数据处理包,学清楚了,基本上数据能随意玩弄,对的,随意玩弄,简直大大提高数据处理及分析效率。我以为,该包是数据分析必学包之一。学习过程需要大量试验,领悟其中设计的精妙之处。
作者:小伍哥
来源:AI入门学习
#包安装与加载
install.packages("dplyr")
library(dplyr)
#调用mtcars数据&数据集介绍
data(mtcars)
str(mtcars)
本文案例使用数据集 mtcars 具体结构如下,直接加载即可共11个字段,32条数据,每个字段的含义如下:mpg-百公里油耗;cyl-气缸数;disp-排量;hp-马力;drat-轴距;wt-重量; qsec-百公里时间 ;vs-发动机类型
##############################################################
按行筛选: filter()
按给定的逻辑判断筛选出符合要求的子数据集, 类似于 subset() 函数
filter(mtcars, mpg>=22)
filter(mtcars, cyl == 4 | gear == 3)
filter(mtcars, cyl == 4 & gear == 3)
注意: 表示 AND 时要使用 & 而避免 &&
##############################################################
按列筛选:select
select()用列名作参数来选择子数据集。dplyr包中提供了些特殊功能的函数与select函数结合使用,用于筛选变量,包括starts_with,ends_with,contains,matches,one_of,num_range和everything等。用于重命名时,select()只保留参数中给定的列,rename()保留所有的列,只对给定的列重新命名。原数据集行名称会被过滤掉。
data(iris)
iris = tbl_df(iris)
#选取变量名前缀包含Petal的列
select(iris, starts_with("Petal"))
#选取变量名前缀不包含Petal的列
select(iris, -starts_with("Petal"))
#选取变量名后缀包含Width的列
select(iris, ends_with("Width"))
#选取变量名后缀不包含Width的列
select(iris, -ends_with("Width"))
#选取变量名中包含etal的列
select(iris, contains("etal"))
#选取变量名中不包含etal的列
select(iris, -contains("etal"))
#正则表达式匹配,返回变量名中包含t的列
select(iris, matches(".t."))
#正则表达式匹配,返回变量名中不包含t的列
select(iris, -matches(".t."))
#直接选取列
select(iris, Petal.Length, Petal.Width)
#返回除Petal.Length和Petal.Width之外的所有列
select(iris, -Petal.Length, -Petal.Width)
#使用冒号连接列名,选择多个列
select(iris, Sepal.Length:Petal.Width)
#选择字符向量中的列,select中不能直接使用字符向量筛选,需要使用one_of函数
vars <- c("Petal.Length", "Petal.Width")
select(iris, one_of(vars))
#返回指定字符向量之外的列
select(iris, -one_of(vars))
#返回所有列,一般调整数据集中变量顺序时使用
select(iris, everything())
#调整列顺序,把Species列放到最前面
select(iris, Species, everything())
##############################################################
神奇变形函数:mutate()transmute()
mutate()和transmute()函数对已有列进行数据运算并添加为新列,类似于transform() 函数,不同的是可以在同一语句中对刚增添加的列进行操作,mutate()返回的结果集会保留原有变量,transmute()只返回扩展的新变量,原数据集行名称会被过滤掉
1、mutate变量变形
1.1 单个变量操作:mutate可以对数据框中已有的变量进行操作或者增加变量,值得称赞的是,一段mutate的代码中,靠后的变量操作可以操作前期新添加或改变的变量,这是transform所不具备的特性。
1.1.1新增列
mtcars%>% mutate(cyl2 = cyl * 2,cyl4 = cyl2 * 2)
看了这篇文章之后,大家对R语言dplyr包是不是更加了解了呢,希望为大家学习R语言助一臂之力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27