
网上找到的有关python语音识别的例子,有一些成熟的模型,可以进行python语音识别,将语音转成文字。例如Cloud Speech API,但是需要你使用google云平台的前提。下面我们一起来看看吧!
作者 | 小隐
来源 | 淘气面包
speech recognition
对于python这一非常成熟的胶水语言,在网上找一些现成的工具包真的不是一个太难的问题。在GitHub上就发现了这样一个神奇的包:speech recognition。
它可以支持实时翻译,当然前提是需要在机器上安装有关麦克风的依赖包;还可以支持将语音文件中的文字直接提取出来。通过speech recognition可以调用多种平台上的模型,比如google API,CMU sphinx,Microsoft Bing Speech,IBM Speech to Text,Wit.ai 等。
离线转换
对于国内的网络环境,无法用google API来将语音数据转换成文本文件,因为在调用这个包的时候,需要连接到google。当然,你可以租用一个国外的VPS来做这件事情。
这里讲一下如何在不联网的情况下,依然可以通过python来将语音文件转换成文字。这里用到的包为sphinx,sphinx是由美国卡内基梅隆大学开发的大词汇量、非特定人、连续英语语音识别系统。
安装 sphinx
我本人所用的环境为ubuntu。
imyin@develop:~/Downloads/phinx$ lsb_release -aNo LSB modules are available.Distributor ID: UbuntuDescription: Ubuntu 16.04.3 LTSRelease: 16.04Codename: xenial
在安装sphinx之前需要安装一些软件包
sudo apt-get install gcc automake autoconf libtool bison swig python-dev libpulse-dev
之后可以在相关网站上下载sphinxbase安装包,当然也可以直接clone github上的包
下载完之后进行解压
tar zxpf sphinxbase-5prealpha.tar.gz
修改文件名
mv sphinxbase-5prealpha sphinxbasels sphinxbaseAUTHORS doc indent.sh Makefile.am README.md src win32autogen.sh .git LICENSE NEWS sphinxbase.pc.in swigconfigure.ac include m4 README sphinxbase.sln test
现在我们应该运行
autogen.sh
来生成
Makefiles
和其他一些脚本以备后续的编译和安装。
./autogen.sh
下面开始源码安装
make && sudo make install
执行完以上命令之后,如果没有出现什么报错信息,就说明已经安装成功了,但是此时你的命令并不可以生效,在运行命令时会出现这样的错误。
imyin@develop:~/Downloads/phinx/sphinxbase$ sphinx_lm_convert sphinx_lm_convert: error while loading shared libraries: libsphinxbase.so.3: cannot open shared object file: No such file or directory
还需要让系统加载目录
/usr/local/lib
,为了让系统每次启动时都可以自动加载,可以修改系统配置文件
ld.so.conf
sudo echo "/usr/local/lib" >> /etc/ld.so.confsudo ldconfig
这时候,就可以通过
sphinx_lm_convert
命令将模型DMP文件转成bin文件
sphinx_lm_convert -i zh_broadcastnews_64000_utf8.DMP -o zh_CN.lm.bin
上面这行代码是将中文的模型DMP文件转成了bin文件。在安装完sphinx后默认只支持英文,在存放模型的路径下只有一个文件名为en-US,所以这里需要添加一个处理中文的模型,相关文件可以在这个网址中下载。
在python中使用sphinx
想要在python中使用sphinx的话,需要安装一些依赖包。
pip install pydub -U # 负责将MP3文件转换为 wav 文件pip install SpeechRecognition -U # 负责将语音转换成文字sudo apt -qq install build-essential swig libpulse-dev # 为后面安装 pocketsphinx 做准备pip install -U pocketsphinx # 为使用 sphinx sudo apt-get install libav-tools # 为解决在调用 pydub 时出现的 warning :RuntimeWarning: Couldn't find ffmpeg or avconv - defaulting to ffmpeg, but may not work warn("Couldn't find ffmpeg or avconv - defaulting to ffmpeg, but may not work", RuntimeWarning)
这时候,就可以启动ipython来试试效果了。
file_path = '/home/imyin/Downloads/phinx/test_data'r = sr.Recognizer()hello_zh = sr.AudioFile(os.path.join(file_path, 'test.wav'))with hello_zh as source: audio = r.record(source)r.recognize_sphinx(audio, language='zh_CN')'今天 天气 很'
可以看出,这个语音识别器已经生效了。但是我说的是“今天天气好热啊”。
看来sphinx中的模型并非很准呐,而且这只是一个短句子。我们接下来看看长句子的效果,我录了村上春树的《当我谈跑步时我谈些什么》中的一段内容。
那一年的七月里,我去了一趟希腊,要独自从雅典跑到马拉松,将那条原始的马拉松路线——马拉松至雅典——逆向跑上一趟。为什么要逆向跑呢?因为清晨便从雅典市中心出发,在道路开始拥堵、空气被污染之前跑出市区,一路直奔马拉松的话,道路的交通量远远少得多,跑起来比较舒适。这不是正式的比赛,自己一个人随意去跑,当然不能指望有什么交通管制。hello_zh = sr.AudioFile(os.path.join(file_path, 'test2.wav'))with hello_zh as source: audio = r.record(source)r.recognize_sphinx(audio, language='zh_CN')'南 音 扬 的 只有 领 过 球 的 立场 是 希望 让 猪只 处理 垃圾 土木工程 上 打球 运动 充满 温情 能 成功 吗 而 中止 了 对 印尼 商报 称 他 不是 没有 立场 谈 那 一 枚 其中 春天 从 雅典 市中心 出发 寸 厂 都 可 成功 突破 寻求 对 於 能 提升 统筹 署 取缔 一路 直奔 马拉松 和 阿 惹 山 活动 等 二十 个 队 中 重申 这 不是 正常 的 比赛 自己 一个人 却 一直到 当然 不能 说明 什么 这种 共识'
呃,看到结果,我觉得可以用一个来形容:差劲。两个字来形容:太差劲!
当然,这个模型只是我直接从网上下载下来的。训练它时所用到的语料不会那么齐全,所以在测试时难免会出现不准确的情况。要想让模型更加准确,需要自己在利用sphnix继续训练模型。
相关办法在其官网上可以找到,也有相应的教程。感兴趣的朋友可以自行研究。
Q: Why my accuracy is poorSpeech recognition accuracy is not always great. To test speech recognition you need to run recognition on prerecorded reference database to see what happens and optimize parameters.You do not need to play with unknown values, the first thing you should do is to collect a database of test samples and measure the recognition accuracy. You need to dump speech utterances into wav files, write the reference text file and use decoder to decode it. Then calculate WER using the word_align.pl tool from Sphinxtrain. Test database size depends on the accuracy but usually it’s enough to have 10 minutes of transcribed audio to test recognizer accuracy reliably. The process is described in tutorialtuning.
Google API
利用google API来处理语音识别则相当准确,不过需要连接google,以下是我在VPS中执行的一段代码,可以看出,它将我的录音精准地翻译成了文字。
但是如果录音文件较大的话,会运行时间很长,并且会返回一个超时的错误,这很是让我苦恼。
不过幸运的是,speech_recognition支持将语音文件进行截取处理。例如,我可以只处理语音文件中的前15秒钟的内容。
with test as source: audio = r.record(source, duration=15)r.recognize_google(audio, language='zh-CN')'那一年的7月里我去了一趟希腊有独自从雅典跑到马拉松江哪条原始的马拉松路线马拉松直雅典一想跑上一趟'
从上面的结果看,简直比sphnix处理的效果好太多了。
通过看帮助文档发现speech_recognition不仅可以截取前面的录音,还可以截取中间的。
In [18]: r.record?Signature: r.record(source, duration=None, offset=None)Docstring:Records up to ``duration`` seconds of audio from ``source`` (an ``AudioSource`` instance) starting at ``offset`` (or at the beginning if not specified) into an ``AudioData`` instance, which it returns.If ``duration`` is not specified, then it will record until there is no more audio input.
例如我想处理5秒至20秒之间的内容。
with test as source: audio = r.record(source, offset=5, duration=15)r.recognize_google(audio, language='zh-CN')'要独自从雅典跑到马拉松江哪条原始的马拉松路线马拉松直雅典一项跑上一趟为什么要一想到呢因为星辰变从雅典市中心出发'。
世界真奇妙,更多python语音识别的例子,大家可以继续去发现哦!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28