京公网安备 11010802034615号
经营许可证编号:京B2-20210330
网上找到的有关python语音识别的例子,有一些成熟的模型,可以进行python语音识别,将语音转成文字。例如Cloud Speech API,但是需要你使用google云平台的前提。下面我们一起来看看吧!

作者 | 小隐
来源 | 淘气面包
speech recognition
对于python这一非常成熟的胶水语言,在网上找一些现成的工具包真的不是一个太难的问题。在GitHub上就发现了这样一个神奇的包:speech recognition。
它可以支持实时翻译,当然前提是需要在机器上安装有关麦克风的依赖包;还可以支持将语音文件中的文字直接提取出来。通过speech recognition可以调用多种平台上的模型,比如google API,CMU sphinx,Microsoft Bing Speech,IBM Speech to Text,Wit.ai 等。
离线转换
对于国内的网络环境,无法用google API来将语音数据转换成文本文件,因为在调用这个包的时候,需要连接到google。当然,你可以租用一个国外的VPS来做这件事情。
这里讲一下如何在不联网的情况下,依然可以通过python来将语音文件转换成文字。这里用到的包为sphinx,sphinx是由美国卡内基梅隆大学开发的大词汇量、非特定人、连续英语语音识别系统。
安装 sphinx
我本人所用的环境为ubuntu。
imyin@develop:~/Downloads/phinx$ lsb_release -aNo LSB modules are available.Distributor ID: UbuntuDescription: Ubuntu 16.04.3 LTSRelease: 16.04Codename: xenial
在安装sphinx之前需要安装一些软件包
sudo apt-get install gcc automake autoconf libtool bison swig python-dev libpulse-dev
之后可以在相关网站上下载sphinxbase安装包,当然也可以直接clone github上的包
下载完之后进行解压
tar zxpf sphinxbase-5prealpha.tar.gz
修改文件名
mv sphinxbase-5prealpha sphinxbasels sphinxbaseAUTHORS doc indent.sh Makefile.am README.md src win32autogen.sh .git LICENSE NEWS sphinxbase.pc.in swigconfigure.ac include m4 README sphinxbase.sln test
现在我们应该运行
autogen.sh
来生成
Makefiles
和其他一些脚本以备后续的编译和安装。
./autogen.sh
下面开始源码安装
make && sudo make install
执行完以上命令之后,如果没有出现什么报错信息,就说明已经安装成功了,但是此时你的命令并不可以生效,在运行命令时会出现这样的错误。
imyin@develop:~/Downloads/phinx/sphinxbase$ sphinx_lm_convert sphinx_lm_convert: error while loading shared libraries: libsphinxbase.so.3: cannot open shared object file: No such file or directory
还需要让系统加载目录
/usr/local/lib
,为了让系统每次启动时都可以自动加载,可以修改系统配置文件
ld.so.conf
sudo echo "/usr/local/lib" >> /etc/ld.so.confsudo ldconfig
这时候,就可以通过
sphinx_lm_convert
命令将模型DMP文件转成bin文件
sphinx_lm_convert -i zh_broadcastnews_64000_utf8.DMP -o zh_CN.lm.bin
上面这行代码是将中文的模型DMP文件转成了bin文件。在安装完sphinx后默认只支持英文,在存放模型的路径下只有一个文件名为en-US,所以这里需要添加一个处理中文的模型,相关文件可以在这个网址中下载。
在python中使用sphinx
想要在python中使用sphinx的话,需要安装一些依赖包。
pip install pydub -U # 负责将MP3文件转换为 wav 文件pip install SpeechRecognition -U # 负责将语音转换成文字sudo apt -qq install build-essential swig libpulse-dev # 为后面安装 pocketsphinx 做准备pip install -U pocketsphinx # 为使用 sphinx sudo apt-get install libav-tools # 为解决在调用 pydub 时出现的 warning :RuntimeWarning: Couldn't find ffmpeg or avconv - defaulting to ffmpeg, but may not work warn("Couldn't find ffmpeg or avconv - defaulting to ffmpeg, but may not work", RuntimeWarning)
这时候,就可以启动ipython来试试效果了。
file_path = '/home/imyin/Downloads/phinx/test_data'r = sr.Recognizer()hello_zh = sr.AudioFile(os.path.join(file_path, 'test.wav'))with hello_zh as source: audio = r.record(source)r.recognize_sphinx(audio, language='zh_CN')'今天 天气 很'
可以看出,这个语音识别器已经生效了。但是我说的是“今天天气好热啊”。
看来sphinx中的模型并非很准呐,而且这只是一个短句子。我们接下来看看长句子的效果,我录了村上春树的《当我谈跑步时我谈些什么》中的一段内容。
那一年的七月里,我去了一趟希腊,要独自从雅典跑到马拉松,将那条原始的马拉松路线——马拉松至雅典——逆向跑上一趟。为什么要逆向跑呢?因为清晨便从雅典市中心出发,在道路开始拥堵、空气被污染之前跑出市区,一路直奔马拉松的话,道路的交通量远远少得多,跑起来比较舒适。这不是正式的比赛,自己一个人随意去跑,当然不能指望有什么交通管制。hello_zh = sr.AudioFile(os.path.join(file_path, 'test2.wav'))with hello_zh as source: audio = r.record(source)r.recognize_sphinx(audio, language='zh_CN')'南 音 扬 的 只有 领 过 球 的 立场 是 希望 让 猪只 处理 垃圾 土木工程 上 打球 运动 充满 温情 能 成功 吗 而 中止 了 对 印尼 商报 称 他 不是 没有 立场 谈 那 一 枚 其中 春天 从 雅典 市中心 出发 寸 厂 都 可 成功 突破 寻求 对 於 能 提升 统筹 署 取缔 一路 直奔 马拉松 和 阿 惹 山 活动 等 二十 个 队 中 重申 这 不是 正常 的 比赛 自己 一个人 却 一直到 当然 不能 说明 什么 这种 共识'
呃,看到结果,我觉得可以用一个来形容:差劲。两个字来形容:太差劲!
当然,这个模型只是我直接从网上下载下来的。训练它时所用到的语料不会那么齐全,所以在测试时难免会出现不准确的情况。要想让模型更加准确,需要自己在利用sphnix继续训练模型。
相关办法在其官网上可以找到,也有相应的教程。感兴趣的朋友可以自行研究。
Q: Why my accuracy is poorSpeech recognition accuracy is not always great. To test speech recognition you need to run recognition on prerecorded reference database to see what happens and optimize parameters.You do not need to play with unknown values, the first thing you should do is to collect a database of test samples and measure the recognition accuracy. You need to dump speech utterances into wav files, write the reference text file and use decoder to decode it. Then calculate WER using the word_align.pl tool from Sphinxtrain. Test database size depends on the accuracy but usually it’s enough to have 10 minutes of transcribed audio to test recognizer accuracy reliably. The process is described in tutorialtuning.
Google API
利用google API来处理语音识别则相当准确,不过需要连接google,以下是我在VPS中执行的一段代码,可以看出,它将我的录音精准地翻译成了文字。

但是如果录音文件较大的话,会运行时间很长,并且会返回一个超时的错误,这很是让我苦恼。
不过幸运的是,speech_recognition支持将语音文件进行截取处理。例如,我可以只处理语音文件中的前15秒钟的内容。
with test as source: audio = r.record(source, duration=15)r.recognize_google(audio, language='zh-CN')'那一年的7月里我去了一趟希腊有独自从雅典跑到马拉松江哪条原始的马拉松路线马拉松直雅典一想跑上一趟'
从上面的结果看,简直比sphnix处理的效果好太多了。
通过看帮助文档发现speech_recognition不仅可以截取前面的录音,还可以截取中间的。
In [18]: r.record?Signature: r.record(source, duration=None, offset=None)Docstring:Records up to ``duration`` seconds of audio from ``source`` (an ``AudioSource`` instance) starting at ``offset`` (or at the beginning if not specified) into an ``AudioData`` instance, which it returns.If ``duration`` is not specified, then it will record until there is no more audio input.
例如我想处理5秒至20秒之间的内容。
with test as source: audio = r.record(source, offset=5, duration=15)r.recognize_google(audio, language='zh-CN')'要独自从雅典跑到马拉松江哪条原始的马拉松路线马拉松直雅典一项跑上一趟为什么要一想到呢因为星辰变从雅典市中心出发'。
世界真奇妙,更多python语音识别的例子,大家可以继续去发现哦!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12