
大家好,我是小z~
最近,不止一次收到群里小伙伴的截图追问:
“这个图叫什么???”
“这个图真好看!!!怎么画啊?”
小z本没有干货,问的人多了,也便有了干货。
此图姓桑名基,平素不喜露面。奈何天生丽质,偶有露面,必引众人围观。
时人有云:“桑基桑基,高贵美丽!”
1
据小z不严谨的抽样提问统计,90%想学习桑基图的旁友,都是被她妖艳炫酷的外表所吸引。
而桑基图真正代表了什么?和类似图表相比的独特性是什么?却几乎无人问津。
害!人真的是视觉动物!
言归正传,我们来看看百科的官方解释:
桑基图(Sankey diagram),即桑基能量分流图,也叫桑基能量平衡图。它是一种特定类型的流程图,图中延伸的分支的宽度对应数据流量的大小,通常应用于能源、材料成分、金融等数据的可视化分析。因1898年Matthew Henry Phineas Riall Sankey绘制的"蒸汽机的能源效率图"而闻名,此后便以其名字命名为"桑基图"。
Emmm,有点内个意思了,结合其他资料,做进一步的汇总提炼:
文字太苍白,下面我们用Python来绘制一个具体的实例~
2
动手之前,我们再次敲黑板,回顾桑基图组成要素的重点——节点、边和流量。
任何桑基图,无论展现形式如何夸张,色彩如何艳丽,动效如何炫酷,本质都逃不出上述3点。
只要我们定义好上述3个要素,Python的pyecharts库能够轻松实现桑基图的绘制。
这里我们用“当代青年熬夜原因分析”数据为例:
数据来源:这个数据是小z近两周卖炒粉时口头做的调研
很规整的性别、熬夜原因、人数三列数据。
不过,要用pyecharts来画图,得入乡随俗,按照它定的规则来规整数据源。
首先是节点,这一步需要把所有涉及到的节点去重规整在一起。也就是要把性别一列的“男”、“女”和熬夜原因一列的“打游戏”、“加班”、“看剧”以列表内嵌套字典的形式去重汇总:
接着,定义边和流量,数据从哪里流向哪里,流量(值)是多少,循环+字典依然可以轻松搞定:
source-target-value的字典格式,很清晰的描述了数据的流转情况。
这两块数据准备完毕,桑基图已经完成了80%,剩下的20%,只是固定格式的绘图代码:
from pyecharts.charts import Sankeyfrom pyecharts import options as optspic = ( Sankey() .add('', #图例名称 nodes, #传入节点数据 linkes, #传入边和流量数据 #设置透明度、弯曲度、颜色 linestyle_opt=opts.LineStyleOpts(opacity = 0.3, curve = 0.5, color = "source"), #标签显示位置 label_opts=opts.LabelOpts(position="right"), #节点之前的距离 node_gap = 30, ) .set_global_opts(title_opts=opts.TitleOpts(title = '熬夜原因桑基图')))pic.render('test.html')
一个回车下去,看看成果:
果然,男打游戏女看剧,加班熬夜是儿戏。
如果想要垂直显示,只需要在add函数里面加一个orient="vertical"就好:
pic = ( Sankey() .add('', nodes, linkes, linestyle_opt=opts.LineStyleOpts(opacity = 0.3, curve = 0.5, color = "source"), label_opts=opts.LabelOpts(position="top"), node_gap = 30, orient="vertical", #更改的是这里 ) .set_global_opts(title_opts=opts.TitleOpts(title = '熬夜原因细分桑基图')))pic.render('test2.html')
OK!不过,还有同学意犹未尽,这个是涉及到两层的流转,那如果三层,需要怎么画呢?
不慌,先导入(狗粮)数据:
这是某宠物品牌,3月份主要产品购买路径(第一次和第二次)的数据,先是品类,其次是第一次购买的产品类型,接着是第二次购买的产品类型,最后一列对应人数。
注:这里第一次购买的产品前面加了“1-”,第二次购买加了“2-”的区分标识。
画图必备的nodes节点实现很简单,所有节点(品类、第一次购买、第二次购买)做去重汇总,对上面生成nodes代码稍作调整就可以:
而linkes只接受source-traget-value的格式,得先对源数据进行格式调整,分别形成“品类-第一次购买-人数”,“第一次购买-第二次购买-人数”的样式,再统一汇总:
规整汇总好之后,只需要复用上面的linkes代码:
画图代码几乎没变,只是改了个标题:
pic = ( Sankey() .add('', nodes, linkes, linestyle_opt=opts.LineStyleOpts(opacity = 0.3, curve = 0.5, color = 'source'), label_opts=opts.LabelOpts(position = 'top'), node_gap = 30, ) .set_global_opts(title_opts=opts.TitleOpts(title = '客户购买路径流转图')))pic.render('test3.html')
大功告成,So easy!无论是多少层数据的流转,只要定义好nodes和linkes,就能以不变应万变。
最后,通过上面的桑基图,我们能够非常直观的洞察到客户购买流转规律:
原本死板的数据,在桑基的装扮之下,变得楚楚动人。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27