
随着大数据和人工智能时代的到来,传统企业开始向数据化和智能化转型。由此,数据分析师相关岗位的需求量逐年递增,近两年呈现出供不应求的状况,在未来很长一段时间这种需求还将继续保持下去。作为过来人,我也算是苦尽甘来啊。想想自己当初为了转行数据分析师行业,付出了多少心血和汗水。
相信还有很多像我一样计划转行或已经准备好转行的朋友,为此,我特地给大家分享了我的专业数据分析师经验之谈,让大家可以更加直观地了解当下数据分析师的行业情况和职位需求。
为了帮助大家对数据分析师相关职位的目前发展状况有个清晰明了的认识,本文通过分析“数据分析师”在全国招聘信息的城市需求、职业门槛、各公司要求情况,以及当下各大企业的人才需求状况,使用数据分析工具Python,包括数据的获取、清洗和可视化的呈现,就为了帮助大家更好地了解数据分析师这个职业。本文所用数据均来源于BOSS直聘的近期数据分析师的全国招聘信息。,绝对客观真实有效!
分析流程
01
明确分析目的
明确分析目的是数据分析的首要的、关键的步骤。在开始一项数据分析前,首先要清楚我们想解决什么问题?通过这次分析想达到一个什么样的效果?下面列出了本次分析的几个目的:
1)了解各城市对数据分析师的需求;
2)数据分析师这个职业的门槛有多高;
3)了解招聘公司情况;
4)了解各行业对数据分析师的需求;
4)了解数据分析师的薪资情况。
02
获取相关数据
明确分析目的后,接下来要做的就是为了解决这些问题,有针对性的获取相关数据。之所以说“有针对性”,是因为并不是数据越多越好,数据越多,我们的抓取、清洗成本也就越高,只有对本次分析有用的数据才是有价值的数据。因此,根据我们的分析目的,本文用Python从BOSS直聘中抓取了如下字段信息:公司名称,公司地址,公司规模,融资情况,所属行业,职位名称,经验要求,学历要求,薪资。源数据格式如下:
03
数据清洗与规整化
得到源数据后,还需要对其进行清洗和规整化后才能进行分析,一般包括清洗、转换、合并、重塑。下面本文使用Python对源数据进行处理:
1) 导入包
2) 缺失值处理
3) 删除重复值
4) 提取城市名
5) 删除空格
6) 提取最低薪资和最高薪资
7) 数据重塑
04
数据可视化分析报告
1. 城市需求分析
初步观察可知,数据分析师的需求主要集中在大城市,其中排名前十的分别是北京、上海、深圳、杭州、南京、广州、东莞、合肥、天津、武汉。其中北京的需求远远超过其它城市,接近上海和深圳的需求总和。
数据分析师职位在城市地理分布上,主要集中于北上广深、长江三角洲、沿海地区。中国内陆地区需求较少,一般集中于省会城市。
2. 职业门槛分析
在学历要求上,数据分析师的门槛相对较高,80.2%的公司要求至少本科学历,4.8%的公司要求硕士学历。因此对想从事数据分析师职业的人员来说,本科学历是必要的敲门砖。
在工作经验要求上,大部分公司对工作经验都有较高要求,其中3-5年工资经验的数据分析师最受欢迎,需求达到37.9%;其次就是1-3年经验的数据分析师,需求达到31.1%。因此,一定的行业工作经验能帮助数据分析师求职者快速找到工作 ,而应届生和无工作经验者只有提高自己的专业技能,才能获得竞争优势。
3. 公司情况分析
对于招聘公司的融资情况上,上市公司居多,达到33.4%;在公司的规模上,大公司对数据分析师的需求更多,其中1000-9999人规模的公司最多,达到45.4% ,其次是10000人以上规模的公司,达33.8%。
4. 行业需求分析
在下面词云图中可以看出,数据分析师涉及的行业十分广泛,供求职者的选择空间很大,其中各行业中,互联网、电子商务、金融、医疗健康、计算机软件等行业的需求量最高。
5. 薪资分析
(1)工作经验和学历对薪资的影响
总的来说,工作经验的长短和学历的大小基本跟薪资的高低是成正比的,工作经验越长,学历越高,薪资也会越高。
在工作经验上,拥有十年以上经验者平均起薪已经超过25000,5-10经验者平均起薪在20000左右,3-5年经验者平均起薪接近15000了,而三年以下和无经验者平均起薪则在10000以下。由此可看出,数据分析师对工作经验的要求还是比较高的,对行业和业务熟悉的人薪资会更高,同时也说明这个职业有很大的上升空间,“越老越值钱”,看重资历。
在学历上,本科和硕士的平均起薪相差2000左右,差别不是很大,但本科以下学历,平均起薪就相对较低了,一般不超过6000。
因此,本科学历是数据分析师高薪的门槛,拥有本科学历和3年以上工作经验是数据分析师高薪的敲门砖。
下面展示的是数据分析师职业需求前十的城市起薪的分布状况。容易看出,北京、上海、深圳、杭州的平均起薪都在15000左右,而广州只有10000左右,南京则在7500左右。
对于北京,数据分析师的平均起薪分布对称,比较符合正态分布;上海、深圳、南京呈右偏分布,其中上海、深圳高薪资职位相对较多,南京有个别公司起薪异常高。杭州、广州呈左偏分布,半数职位起薪在10000以下,个别职位薪资不超过5000,远远低于平均水平。
因此,在北京、上海、深圳三个城市能有更大的概率找到高薪的数据分析师职位;其次是杭州、广州,虽有部分公司薪资较低,但平均工资还是比较可观;而南京虽然需求较多,但高薪职位相对较少,大部分职位工资都不超过10000,集中在3000-7500中间。
05
分析总结
本文从多角度分析了BOSS直聘近期数据分析师的招聘信息情况,对数据分析师有如下几点总结:
1)北上广深、长江三角洲、沿海地区是数据分析师的集中地区,其中,北京的需求远远超过其它地区,若想从事数据分析师职业,在北京机会最多。
2)本科学历、3-5年以上工作经验的数据分析师成为最受公司欢迎的“香饽饽”,并且平均薪资也相对较高,在15000左右。
3)上市公司、1000-9999的大公司对数据分析师的需求更高;
4)互联网、电子商务、金融、医疗健康是数据分析师首选的几大行业。
5)在北京、上海、深圳寻找高薪职位的概率更大。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10