
作者 | Ben Dickson
编译 | CDA数据分析师
自从第一个人类文明形成以来,医生一直是人类社区中永远存在的成员,可以治愈疾病和照顾病人。随着科学技术的进步,他们的方法已经从祈祷神灵到混合草药混合使用科学方法和先进的医疗设备来诊断,治疗和预防疾病。
如今,医生可以轻松地使患者免于疾病的危害,在过去的几个世纪中,这种疾病已经杀死了数百万人。但是仍然有更多改进的空间。
下一轮医疗保健和医学革命可能与深度学习的进步有关,深度学习是人工智能的分支,在过去十年中非常流行。深度学习已经在医学上取得了令人瞩目的成就,关于人工智能如何改变医疗保健的研究令人兴奋, 并且有很多文章探讨了深度学习算法如何帮助诊断和治疗复杂疾病。
但是,很少讨论的是学习如何可能改变我们与医生互动的方式。
医师,科学家和研究员Eric Topol博士在他的最新著作《 深度医学:人工智能如何使医疗保健再次成为人类》中阐明了AI如何解决医学和医疗保健领域的一些最大挑战。这包括医患关系面临的挑战。
在接受TechTalks采访时,Topol博士讨论了深度学习在改善医患之间的人际互动方面的一些前景,以及未来面临的一些关键挑战。
我们经常从诸如阅读生命体征,在医学扫描中寻找复杂模式,对患者进行手术以及撰写药物处方等活动来思考医学。但是在医学上,医患之间的人际互动与发生的所有科学努力一样重要。
通常,医生温暖而舒适的语气对患者的影响与治疗本身一样多。
不幸的是,在当今的卫生保健系统中,医患关系已大大恶化。医生与患者沟通的时间越来越少,而在做其他事情上的时间越来越多。
Topol博士在他的书的早期就对此进行了扩展。“当今医疗保健中的问题是缺少医疗服务。也就是说,作为医生,我们通常无法真正足够地照顾患者。而且患者不觉得自己得到了照顾,”他写道。
Topol博士在电话中对TechTalks表示:“今天,我们看到了医患关系的侵蚀,医生成为在职业倦怠中这是有史以来最高记录的职业“。
Eric Topol博士
具有讽刺意味的是,部分问题来自技术进步。与一个世纪前相比,医学发生了很大变化,已经成为数字化和基于数据的领域。收集和分析数据的方法有很多,而医生和患者之间过去发生的许多交互现在已被数据收集和检查任务所取代。
但是这些任务仍然需要大量的人力来收集和分析数据,而这一切又都落在了医生的肩上。医生必须花费大量时间在数据库中输入数据,盯着监视器,而减少与患者互动的时间。发表在《内科医学年鉴》上的一项研究发现,平均而言,医生仅将其时间的49%花费在填写电子健康记录(EHR)和做案头工作上,而他们的总时间中只有27%用于直接面对临床与患者共度时光。
Topol博士说:“我们之所以如此精疲力尽,是因为医生是数据管理员,而且失去了士气。” Topol博士警告说,医生精神的减弱也会导致医疗失误。
加利福尼亚大学旧金山分校(UCSF)的另一项研究发现,在EHR中输入的数据中有82%是复制粘贴或导入的,而只有18%的信息是手动输入的。这可能会导致临床错误并导致有害的治疗决策。
幸运的是,这是AI展现出巨大希望的领域。深度学习算法的核心技术- 人工神经网络非常擅长在混乱,非结构化的数据(例如图像,音频和文本)中找到相关的模式和相关性。因此,它在计算机视觉,语音识别和自然语言处理等领域取得了长足的进步。
在医学领域,人工智能算法可以使以前需要大量人力的某些任务实现自动化。例如,人工智能算法可以减轻医生在拜访患者时做笔记的痛苦。在该领域已经进行了有趣的工作,包括Microsoft和Google的项目。机器学习算法可以从医生与患者之间的相遇中提取有意义的信息,并将其记录在患者的健康记录中。
来自自然语言处理和机器学习的AI衍生笔记非常出色。Topol博士说:“这已经在英国,中国和美国进行了试点研究。”
AI还有许多其他领域可以提高医生执行任务的速度和准确性,例如分析医学扫描和查找病历中的相关信息。总的来说,这些技术可以释放医生在病人身上花费的大部分时间。
Topol博士说:“由于时间的原因,人工智能可能是改善和恢复医患关系的最好方法,” “这是人工智能可以带给我们的许多不同事物的产物。它包括消除键盘,能够处理患者的所有数据以使医生和临床医生的生活更轻松,能够进行许多模式识别,例如扫描和幻灯片以及其他日常使用的东西。每天都可以进行,并且更准确地做到这一点。”
在《深度医学》的第3章中 ,Topol博士深入研究了深度学习算法可帮助自动执行诊断任务的许多领域,包括脑,心脏和眼部疾病。
但是Topol博士还警告说,人工智能所提供的提高的速度和效率可能会将事情引向错误的方向。“所有这些生产力,效率,工作流程改进,准确性和速度都可用于医患,因为这可能导致管理员和经理要求在任何单位时间内看更多的患者,或者读取更多的扫描图像和更多的幻灯片,并且不断。”他说。
我们如何防止这种情况发生?该行业将必须优先利用AI的进步来恢复医患关系。“默认情况下不会发生。这将需要大量的行动主义。要付出巨大的努力才能停止医学的大生意,并开始与人类建立联系,这将需要大量的努力,” Topol博士说。
鉴于对AI的普遍看法是,这里是替代人类并使他们的技能自动化的方法,这听起来可能是个奇怪的建议。一些科学家甚至建议医生完全被AI算法取代。但是Topol博士认为我们应该关注人为因素。
“这具有讽刺意味,但这是我们拥有增强人类技术的机会,人工智能在图像识别,语音识别以及技术上可以做的所有事情的所有强大方面的产物。对医生和患者而言,生活更轻松,更准确。”
医学的过程,工具,实践和设施与人类社会和科学一起发展。人工智能将为该领域带来更多改进。但是,在整个历史中一直保持不变的一件事是人类医生。这不太可能很快改变。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25