京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者 | CDA就业班·毕业学员
我本科就读的是一个非临床类医学相关专业,在大四近一年的专业实习过程中意识到自己并不想在本专业领域内继续发展,彼时互联网行业发展如火如荼,随着各行各业的不断渗透交集,以及企业对专业人才需求的全面性越来越看重,我知道了并不是只有计算机专业才能进入互联网行业,像产品,运营,市场等等这些职位,其他专业都可以从实习生开始做起,逐渐学习再转行的。
最后还是因为本专业加上大药企实习经验,毕业后进入一家互联网医疗公司做销售,这就是我和数据结缘的开始。其实销售并不是大家想的那样,在路边向陌生人推销东西,互联网公司的销售对数据的依赖比我们想象的要大得多。提高销售人员拜访效率的秘密武器就是对庞大的客户群产生的数据进行分析,进行用户画像,从而有针对性的拜访,很多大公司的销售支持岗位明确要求有数据分析能力。
之后又去了一家生物技术公司,做用户运营相关工作,在此期间掌握了较多的用户体检,运营,产品相关的知识,这些知识的掌握对一个数据分析师也是必须的,我们做任何的数据必须和业务结合,对业务掌握的越好,才能恰当地应用数据分析产生的价值。同时我也为自己未来的发展感到迷茫,觉得自己没有掌握一个像样的技术。
这个时候我的一个前同事从CDA毕业,顺利找到工作,在一天的时间内,我了解数据分析行业,意识到自己在大学时期高等数学,统计学,数据库的课程学得都非常不错,数据分析其实在我近两年的销售,运营,用户体验的工作中一直有涉及到,另外近年来数据分析的发展前景非常之好,全世界的大学都在扩招数据专业的学生,当时立即就做出了辞职的决定。
在18年底开始了脱产学习,CDA的课程很紧凑,每天都很忙碌,课程循序渐进,由浅入深,从EXCEL学到PowerBI再到SQL,之后又复习了大学线性代数,微积分,统计学的内容,为后来难度更高的SPSS,PYTHON中的假设检验,算法,模型等的学习和理解奠定了基础。每一板块的课程结束后就会有相应的案例课,大家可不要忽视这些案例课,比如李奇老师的案例课,对数据分析思路的讲解就对我们后续找工作和实际工作中很有帮助。毕业答辩大家也要很重视,这是我们难得的做大型项目的机会,好好做,把每一个步骤搞清楚,理清数据分析思路,找工作的时候就靠它来出彩了。
三个月的学习时间过得很快,接下来就到了找工作的时候,刚才也说到了,我的毕业时间不长,但是工作经历较多,每段工作时间也都不超过一年,本科也不是统计,数学,计算机,信息技术等这些相关专业。尽管我在老师指导简历的基础上,又把自己的项目每一个步骤放到了知乎上,链接写在了简历里,开始的一周一个面试都没有,后来听了李老师的建议,继续修改了简历,改变了投递策略,第二周开始陆陆续续有了面试,陆续面试了十几家公司,有大有小,有互联网行业,咨询行业,传统行业,国企等,面试多了后,有些发现,大多数招聘单位都希望能找到和招聘岗位有相同或者类似工作经验的人,能马上上手的人,或者就是统计数学专业的人,不满足以上条件的同学,就比较难找到满意的工作。这也是一个考验心态的过程,不仅是耐心,还有对每次面试的思考,对自己的反思,同时最重要的是面试技巧。
除了就业老师课上介绍的面试技巧,还有一个技巧,我人为最重要的是,了解即将要面试的公司,了解它的业务,产品,模式,发展历程,融资情况等,重点是反复阅读招聘信息中的岗位要求和岗位职责的每个条款,确认自己能够满足每个条款中的要求,不能满足的,那就在面试前通过查阅资料或者看书去了解甚至掌握。我举一个例子,比如后天去面试一家电商公司,它家的岗位职责就是对电商数据处理和分析,假如我们之前并没有电商数据分析经验,这个时候就要去看李奇老师的电商案例,去网上搜一些电商数据分析常用的指标,在面试时适当引用,结合自己的项目举一反三。经历了多次失败后,我最终在一家互联网医疗公司找到了合适的职位。
仅仅找到工作还是数据分析之路的开始,不过在CDA这三个月学习,已经让我养成了下班后学习和遇到不懂得去找资料学习的的习惯,实际上在工作中遇到的困难更多,为了能顺利度过试用期,为了能在数据分析道路上走的更远,不断充实自己才是王道。
下面给大家介绍一下我的学习课程——CDA数据分析就业班,希望有致力于加入数据分析行业的朋友,可以和我一样,在CDA学习的这几个月里,不断增值自己,逐步开启人生新的方向,让我们都可以由此出发,走得越来越远,也发展得越来越好!
直达课程页面:
https://www.cda.cn/kecheng/6.html
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12