
作者 | CDA就业班·毕业学员
我本科就读的是一个非临床类医学相关专业,在大四近一年的专业实习过程中意识到自己并不想在本专业领域内继续发展,彼时互联网行业发展如火如荼,随着各行各业的不断渗透交集,以及企业对专业人才需求的全面性越来越看重,我知道了并不是只有计算机专业才能进入互联网行业,像产品,运营,市场等等这些职位,其他专业都可以从实习生开始做起,逐渐学习再转行的。
最后还是因为本专业加上大药企实习经验,毕业后进入一家互联网医疗公司做销售,这就是我和数据结缘的开始。其实销售并不是大家想的那样,在路边向陌生人推销东西,互联网公司的销售对数据的依赖比我们想象的要大得多。提高销售人员拜访效率的秘密武器就是对庞大的客户群产生的数据进行分析,进行用户画像,从而有针对性的拜访,很多大公司的销售支持岗位明确要求有数据分析能力。
之后又去了一家生物技术公司,做用户运营相关工作,在此期间掌握了较多的用户体检,运营,产品相关的知识,这些知识的掌握对一个数据分析师也是必须的,我们做任何的数据必须和业务结合,对业务掌握的越好,才能恰当地应用数据分析产生的价值。同时我也为自己未来的发展感到迷茫,觉得自己没有掌握一个像样的技术。
这个时候我的一个前同事从CDA毕业,顺利找到工作,在一天的时间内,我了解数据分析行业,意识到自己在大学时期高等数学,统计学,数据库的课程学得都非常不错,数据分析其实在我近两年的销售,运营,用户体验的工作中一直有涉及到,另外近年来数据分析的发展前景非常之好,全世界的大学都在扩招数据专业的学生,当时立即就做出了辞职的决定。
在18年底开始了脱产学习,CDA的课程很紧凑,每天都很忙碌,课程循序渐进,由浅入深,从EXCEL学到PowerBI再到SQL,之后又复习了大学线性代数,微积分,统计学的内容,为后来难度更高的SPSS,PYTHON中的假设检验,算法,模型等的学习和理解奠定了基础。每一板块的课程结束后就会有相应的案例课,大家可不要忽视这些案例课,比如李奇老师的案例课,对数据分析思路的讲解就对我们后续找工作和实际工作中很有帮助。毕业答辩大家也要很重视,这是我们难得的做大型项目的机会,好好做,把每一个步骤搞清楚,理清数据分析思路,找工作的时候就靠它来出彩了。
三个月的学习时间过得很快,接下来就到了找工作的时候,刚才也说到了,我的毕业时间不长,但是工作经历较多,每段工作时间也都不超过一年,本科也不是统计,数学,计算机,信息技术等这些相关专业。尽管我在老师指导简历的基础上,又把自己的项目每一个步骤放到了知乎上,链接写在了简历里,开始的一周一个面试都没有,后来听了李老师的建议,继续修改了简历,改变了投递策略,第二周开始陆陆续续有了面试,陆续面试了十几家公司,有大有小,有互联网行业,咨询行业,传统行业,国企等,面试多了后,有些发现,大多数招聘单位都希望能找到和招聘岗位有相同或者类似工作经验的人,能马上上手的人,或者就是统计数学专业的人,不满足以上条件的同学,就比较难找到满意的工作。这也是一个考验心态的过程,不仅是耐心,还有对每次面试的思考,对自己的反思,同时最重要的是面试技巧。
除了就业老师课上介绍的面试技巧,还有一个技巧,我人为最重要的是,了解即将要面试的公司,了解它的业务,产品,模式,发展历程,融资情况等,重点是反复阅读招聘信息中的岗位要求和岗位职责的每个条款,确认自己能够满足每个条款中的要求,不能满足的,那就在面试前通过查阅资料或者看书去了解甚至掌握。我举一个例子,比如后天去面试一家电商公司,它家的岗位职责就是对电商数据处理和分析,假如我们之前并没有电商数据分析经验,这个时候就要去看李奇老师的电商案例,去网上搜一些电商数据分析常用的指标,在面试时适当引用,结合自己的项目举一反三。经历了多次失败后,我最终在一家互联网医疗公司找到了合适的职位。
仅仅找到工作还是数据分析之路的开始,不过在CDA这三个月学习,已经让我养成了下班后学习和遇到不懂得去找资料学习的的习惯,实际上在工作中遇到的困难更多,为了能顺利度过试用期,为了能在数据分析道路上走的更远,不断充实自己才是王道。
下面给大家介绍一下我的学习课程——CDA数据分析就业班,希望有致力于加入数据分析行业的朋友,可以和我一样,在CDA学习的这几个月里,不断增值自己,逐步开启人生新的方向,让我们都可以由此出发,走得越来越远,也发展得越来越好!
直达课程页面:
https://www.cda.cn/kecheng/6.html
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28