
作者 | Matthew Mayo
编译 | CDA数据分析师
正如我们告别上一年并期待新的一年一样,KDnuggets再次征求了众多研究和技术专家对2019年最重要的发展及其2020年关键趋势预测的意见。
又到了年终,这意味着现在是KDnuggets年终专家分析和预测的时候了。今年,我们提出了一个问题:
当我们回顾一年前专家的预测时,我们可以看到对自然技术进步的预测,并带有一些更加雄心勃勃的预测。有几个一般性主题,以及几个值得注意的点。
特别要关注的是,人们不止一次提到了对AI的恐惧,不过目前这一预测似乎已经平息了。关于自动化机器学习的进展的讨论非常多,人们对它目前是否有用等议论纷纷。我认为在某种程度上尚无定论,但是当对技术的期望降低时,我们就更容易将其视为有用的添加物而不是迫在眉睫的替代物了。
也有充分的理由指出了新增的AI永远是有益的,并且有无数的例子表明了这种预测的准确性。实用的机器学习会产生影响,现在是时候学习使用机器学习了。最后,还提到了反乌托邦人工智能发展引起的对监视,恐惧和操纵的日益关注。
还有一些预测还没有完成。感兴趣的读者可以自行寻找。
今年我们的专家名单包括Imtiaz Adam,Xavier Amatriain,Anima Anandkumar,Andriy Burkov,Georgina Cosma,Pedro Domingos,Ajit Jaokar,Charles Martin,Ines Montani,Dipanjan Sarkar,Elena Sharova,Rosaria Silipo和Daniel Tunkelang。我们感谢他们从忙碌的年终时间表中抽出时间为我们提供见解。
这是同一系列文章中的第一篇。尽管它们将被划分为研究,部署和行业,但这些学科之间存在相当大且可以理解的重叠。
以下是今年专家组提出的2019年主要趋势和2020年的预测。
在2019年,提高了对与数据科学中的道德与多样性有关的问题的认识。
2020年,数据科学团队和商业团队将更加融合。5G将推动AI推理的发展,推动智能物联网的发展,这意味着AI将越来越多地进入物理世界。深度学习与增强现实相结合将改变客户体验。
我认为这是深度学习和NLP的一年,这一点很难反对。更具体地说,是语言模型的年份,是Transformers和GPT-2的一年。是的,这可能令人难以置信,但是距OpenAI首次使用至今不到一年,谈到他们的GPT-2语言模型。这篇博客文章引发了很多关于AI安全的讨论,因为OpenAI并不对外发布该模型。
从那时起,该模型被公开复制,并最终发布。但是,这并不是该领域的唯一进步。我们已经看到Google发布了AlBERT或XLNET,还讨论了BERT如何成为多年来Google搜索最大的改进。从Amazon、Microsoft到Facebook,所有人似乎已经真正地加入了语言模型革命,我确实希望在2020年在该领域看到令人瞩目的进步,而且似乎我们越来越接近通过图灵测试的日子了。
研究人员希望更好地了解深度学习,其泛化特性和失败案例。减少对标记数据的依赖,而自训练等方法也取得了进展。模拟对于AI培训变得越来越重要,并且在诸如自动驾驶和机器人学习等视觉领域的逼真度也越来越高。语言模型变得很庞大,例如NVIDIA的80亿Megatron模型在512 GPU上进行了训练,并开始生成连贯的段落。
但是,研究人员在这些模型中显示出虚假的相关性和不良的社会偏见。人工智能法规已成为主流,许多知名政客都表示支持政府机构禁止面部识别。从去年的NeurIPS名称更改开始,人工智能会议开始执行行为守则,并加大改善多样性和包容性的努力。
在未来的一年中,我预计将会有新的算法开发,而不仅仅是深度学习的表面应用。这将特别影响物理,化学,材料科学和生物学等许多领域的“科学人工智能”。
毫无疑问,2019年主要的发展是BERT,这是一种语言建模神经网络模型,可以在几乎所有任务上提高NLP的质量。Google甚至将其用作相关性的主要信号之一,这是多年来最重要的更新。
在我看来,2020年关键趋势将是PyTorch在业界的广泛采用,对更快的神经网络训练方法的研究以及对便利硬件上的神经网络的快速训练的研究。
在2019年,我们对诸如YOLOv3之类的深度学习模型中令人印象深刻的功能进行了评估,以应对各种复杂的计算机视觉任务,尤其是实时对象检测。我们还已经看到,生成式对抗网络继续吸引着深度学习社区的关注,其用于ImageNet生成的BigGAN模型以及用于人类图像合成的StyleGAN合成图像。
今年,我们还意识到,愚弄深度学习模型非常容易,一些研究还表明,深度神经网络很容易受到对抗性例子的攻击。在2019年,我们还看到有偏差的AI决策模型被部署用于面部识别,招聘和法律应用。我希望在2020年看到多任务AI模型的发展,这些模型希望能做到实现通用和多用途。
2019年的主要发展:
2020年的主要趋势:
在2019年,我们将牛津大学的课程更名为人工智能:云和边缘实现,这也反映了我的个人观点,即2019年是云成熟的一年。今年是我们谈论的各种技术(大数据,人工智能,物联网等)在云框架内融合在一起的一年。这种趋势将继续,特别是对于企业。公司将采取“数字化转型”计划-在这些计划中,他们将使用云作为统一的范式来转换由AI驱动的流程(类似于重新设计公司2.0)
在2020年,我还将看到NLP逐渐成熟(BERT,Megatron)。5G将继续部署。当2020年后5G全面部署(例如无人驾驶汽车)时,我们将看到IoT的广泛应用。最后,在IoT方面,我遵循一种称为MCU(微控制器单元)的技术-特别是机器学习模型或MCU的部署。
我相信AI会改变游戏规则,每天我们都会看到许多有趣的AI部署示例。阿尔文·托夫勒(Alvin Toffler)在《Future shock》中所预测的大部分内容,今天已经在我们身边了,人工智能究竟将如何放大,还有待观察!可悲的是,人工智能的变化速度将使许多人落伍。
2019年的AI在NLP方面取得了巨大进步,例如BERT,ELMO,GPT-2等!OpenAI发布了他们的大型GPT-2模型,用于文本的DeepFakes。谷歌宣布将BERT用于搜索,这是自pandas以来的最大变化。甚至我在UC Berkeley的合作者都发布了(量化的)QBERT,用于低占用空间的硬件。每个人都在制作自己的文档嵌入。
这对2020年意味着什么。根据搜索专家的说法,2020年将是具有相关性的一年。期望看到通过BERT样式的微调嵌入,向量空间搜索最终会受到关注。
在底层,作为AI研究的选择,2019年PyTorch超过Tensorflow。随着TensorFlow 2.x的发布(以及pytorch的TPU支持)。2020年的AI编码有希望将全部执行。
大公司在AI方面正在进步吗?报告显示成功率为十分之一。不是很好。因此,AutoML将在2020年出现需求,尽管我个人认为,像取得出色的搜索结果一样,成功的AI需要针对业务的定制解决方案。
在2019年,每个人都选择“ DIY AI”而不是云解决方案。推动这一趋势的一个因素是迁移学习的成功,这使任何人都可以更轻松地以良好的准确性训练自己的模型,并根据他们的特定用例进行微调。每个模型只有一个用户,服务提供商无法利用规模经济。转移学习的另一个优点是,数据集不再需要那么大,因此注释也在内部移动。
内部趋势是一个积极的发展:商业AI的集中程度远低于许多人的预期。几年前,人们担心每个人都只能从一个提供商那里获得“他们的AI”。如今取而代之的是,人们并没有从任何提供商那里获得AI,而是他们自己在做。
2019年人工智能领域的主要进步是在Auto-ML,可解释AI和深度学习领域。自最近几年以来,数据科学的民主化仍然是一个关键方面,并且与Auto-ML有关的各种工具和框架都在试图使这一过程变得更容易。还有一点需要注意的是,在使用这些工具时,我们需要小心以确保我们不会出现偏倚或过度拟合的模型。
公平,负责和透明仍然是客户,企业和企业接受AI决策的关键因素。因此,可解释的AI不再是仅限于研究论文的主题。许多优秀的工具和技术已经开始让机器学习模型的决策更具可解释性。同样重要的是,在深度学习和转移学习领域,尤其是在自然语言处理方面,我们已经看到了许多进步。
我希望在2020年围绕NLP和计算机视觉的深度转移学习领域看到更多的研究和模型,并希望有一些东西能够充分利用深度学习和神经科学的知识,从而引导我们迈向真正的AGI。
到目前为止,深度强化学习是2019年最重要的机器学习的发展,在深度强化学习DQN和AlphaGo的游戏中, 导致围棋冠军Lee Sedol退役。另一个重要的进步是自然语言处理,谷歌和微软开源了BERT(深度双向语言表示),从而领导了GLUE基准测试,并开发了用于语音解析任务的MT-DNN集成并进行了开源采购。
重要的是要强调欧洲委员会发布的《Ethics guidelines for trustworthy AI》(人工智能道德准则),这是关于人工智能道德的第一份正式准则,其中列出了关于合法,道德和AI发展的明智准则。
最后,我想要分享一点,PyData London 2019的所有主题演讲者都是女性,这是一个可喜的进步。
我预计2020年的主要机器学习发展趋势将在NLP和计算机视觉领域内继续。
2019年最有希望的成就是采用主动学习,强化学习和其他半监督学习程序。半监督学习可能有希望填充我们数据库的所有这些未标记数据存根。
另一个重大进步是在auto-ML概念中用“指导”对“自动”一词进行了更正。对于更复杂的数据科学问题,专家干预似乎是必不可少的。
2020年,数据科学家需要一种快速的解决方案,以实现简单的模型部署,持续的模型监视和灵活的模型管理。真正的业务价值将来自数据科学生命周期的这三个最终部分。
我还相信,深度学习黑匣子的更广泛使用将引发机器学习可解释性(MLI)的问题。到2020年底,我们将看到MLI算法是否能够应对详尽解释深度学习模型闭门事件的挑战。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28