
作者 | Harris
来源 | 网络大数据
数据已成为所有企业最重要的知识产权,并且其内在价值只会在未来几年内增长。
现在,它对运营、流程、输出和供应都非常重要,因此,如何存储、共享和处理信息的选择将决定企业运营的成功与长久运营。
行业专家密切关注数据困境的各个方面,更深入地探讨特定的问题和主题。但是,企业需要为数据中心的变化以及它们为什么需要变化的场景做准备,并对未来一年做出一些预测。
数据不再简单地存放在传统的现场服务器上,甚至不再是来自基于云计算的第三方的服务器上。越来越多地利用混合云/多云选项来利用数据需求的迅速增长。
当合作伙伴可以在全球范围内安全私下分析和共享信息时,将带来许多好处。但是,随着企业发挥这一潜力的潜能,许多企业现在正在更加谨慎和战略性地考虑如何存储数据、存储数据的位置以及对财务、安全性和环境的影响。
这些重要的对话将推动行业核心对未来数据中心的定义,这些是人们需要考虑和关注的关键领域。
1. 成长性
根据全球互连指数第3卷,预计通过数据中心进行私人交换数据的能力的全球增长速度预计为51%。这意味着人们迫不及待地想建立能够满足当前需求的数据中心。而将会预见一个日益连通的世界,并为未来几年人们期望的需求建模。那些对未来有短期看法的人会为此后悔。
2. 可持续发展
专家预计,到2020年,数据中心运营商将开始根据积极的外部性来规划其可持续性投资。而不是专注于消除负面影响。在全球范围内,企业正在更加认真地考虑其碳足迹,这已扩展到其数据中心的功耗。
对于数据中心运营商来说,这是一个至关重要的领域,它需要不断创新以减少能耗,并使用可再生能源来满足对功率密集型新技术的需求。
在Equinix公司委托的2,450多名IT决策者进行的独立全球调查中,有45%的受访者表示他们的客户希望他们证明IT基础设施的可持续性。39%的人还说,IT基础设施的碳影响是其IT战略的核心。
3. 测量
如果没有详细了解数据中心的实时性能,则很难计划最佳效率。以分析平台为后盾,使企业能够根据观察到的结果采取行动。能源使用效率(PUE)是一项重要的行业指标,但到2020年,运营商将开始着眼于能源使用效率(PUE)之外的问题。随着数据中心及其支持的社区之间的联系越来越紧密,其解决方案将不断创新。
机器学习将使人们的基础设施能够进行实时调整,而根本不需要人工交互,但在解释结果时,它能否取代人类吗?
4. 责任
数据中心行业中的所有工作人员都必须为自己的未来承担集体责任,并通过创新合作解决一些紧迫的挑战。设计必要的解决办法不能单独进行;必须分享经验教训,以取得可持续的进展。未来数据中心的效率将完全取决于优化大楼内的设备,使其能够最大程度地满足数字需求。
5. 机器学习
最大的挑战之一是如何捕获数据中心实际创建的所有数据。这是一个复杂的过程。使用人工智能(AI)可以使人们快速找到模式并优化数据中心,从而使经验丰富的工程团队能够迅速实施新策略来优化设施。
正在开发工具,使客户能够实时在线访问与其占用的机架空间有关的环境和操作信息(Equinix公司的IBXSmartView监视电气和机械基础设施,以不断更新关于最有效和可靠操作的见解)。预计到2020年,越来越多的最终用户将使用此类信息来自动化与设施运营商的更多互动。为两者创造新的效率。
6. 技术与基础设施
无论是燃料电池、冷却系统还是大型储能/电池组,正在开发大量技术来为永远在线的数据中心重新定义的未来提供动力。一些预测表明,到2025年,数据中心将使用全球4.5%的能源,而不断增长的能源成本意味着,即使效率略有提高,也可以节省大量成本,并减少数百万吨的碳排放量。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12