京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者 | Harris
来源 | 网络大数据
数据已成为所有企业最重要的知识产权,并且其内在价值只会在未来几年内增长。
现在,它对运营、流程、输出和供应都非常重要,因此,如何存储、共享和处理信息的选择将决定企业运营的成功与长久运营。
行业专家密切关注数据困境的各个方面,更深入地探讨特定的问题和主题。但是,企业需要为数据中心的变化以及它们为什么需要变化的场景做准备,并对未来一年做出一些预测。
数据不再简单地存放在传统的现场服务器上,甚至不再是来自基于云计算的第三方的服务器上。越来越多地利用混合云/多云选项来利用数据需求的迅速增长。
当合作伙伴可以在全球范围内安全私下分析和共享信息时,将带来许多好处。但是,随着企业发挥这一潜力的潜能,许多企业现在正在更加谨慎和战略性地考虑如何存储数据、存储数据的位置以及对财务、安全性和环境的影响。
这些重要的对话将推动行业核心对未来数据中心的定义,这些是人们需要考虑和关注的关键领域。
1. 成长性
根据全球互连指数第3卷,预计通过数据中心进行私人交换数据的能力的全球增长速度预计为51%。这意味着人们迫不及待地想建立能够满足当前需求的数据中心。而将会预见一个日益连通的世界,并为未来几年人们期望的需求建模。那些对未来有短期看法的人会为此后悔。
2. 可持续发展
专家预计,到2020年,数据中心运营商将开始根据积极的外部性来规划其可持续性投资。而不是专注于消除负面影响。在全球范围内,企业正在更加认真地考虑其碳足迹,这已扩展到其数据中心的功耗。
对于数据中心运营商来说,这是一个至关重要的领域,它需要不断创新以减少能耗,并使用可再生能源来满足对功率密集型新技术的需求。
在Equinix公司委托的2,450多名IT决策者进行的独立全球调查中,有45%的受访者表示他们的客户希望他们证明IT基础设施的可持续性。39%的人还说,IT基础设施的碳影响是其IT战略的核心。
3. 测量
如果没有详细了解数据中心的实时性能,则很难计划最佳效率。以分析平台为后盾,使企业能够根据观察到的结果采取行动。能源使用效率(PUE)是一项重要的行业指标,但到2020年,运营商将开始着眼于能源使用效率(PUE)之外的问题。随着数据中心及其支持的社区之间的联系越来越紧密,其解决方案将不断创新。
机器学习将使人们的基础设施能够进行实时调整,而根本不需要人工交互,但在解释结果时,它能否取代人类吗?
4. 责任
数据中心行业中的所有工作人员都必须为自己的未来承担集体责任,并通过创新合作解决一些紧迫的挑战。设计必要的解决办法不能单独进行;必须分享经验教训,以取得可持续的进展。未来数据中心的效率将完全取决于优化大楼内的设备,使其能够最大程度地满足数字需求。
5. 机器学习
最大的挑战之一是如何捕获数据中心实际创建的所有数据。这是一个复杂的过程。使用人工智能(AI)可以使人们快速找到模式并优化数据中心,从而使经验丰富的工程团队能够迅速实施新策略来优化设施。
正在开发工具,使客户能够实时在线访问与其占用的机架空间有关的环境和操作信息(Equinix公司的IBXSmartView监视电气和机械基础设施,以不断更新关于最有效和可靠操作的见解)。预计到2020年,越来越多的最终用户将使用此类信息来自动化与设施运营商的更多互动。为两者创造新的效率。
6. 技术与基础设施
无论是燃料电池、冷却系统还是大型储能/电池组,正在开发大量技术来为永远在线的数据中心重新定义的未来提供动力。一些预测表明,到2025年,数据中心将使用全球4.5%的能源,而不断增长的能源成本意味着,即使效率略有提高,也可以节省大量成本,并减少数百万吨的碳排放量。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31