京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者 | Harris
来源 | 网络大数据
数据已成为所有企业最重要的知识产权,并且其内在价值只会在未来几年内增长。
现在,它对运营、流程、输出和供应都非常重要,因此,如何存储、共享和处理信息的选择将决定企业运营的成功与长久运营。
行业专家密切关注数据困境的各个方面,更深入地探讨特定的问题和主题。但是,企业需要为数据中心的变化以及它们为什么需要变化的场景做准备,并对未来一年做出一些预测。
数据不再简单地存放在传统的现场服务器上,甚至不再是来自基于云计算的第三方的服务器上。越来越多地利用混合云/多云选项来利用数据需求的迅速增长。
当合作伙伴可以在全球范围内安全私下分析和共享信息时,将带来许多好处。但是,随着企业发挥这一潜力的潜能,许多企业现在正在更加谨慎和战略性地考虑如何存储数据、存储数据的位置以及对财务、安全性和环境的影响。
这些重要的对话将推动行业核心对未来数据中心的定义,这些是人们需要考虑和关注的关键领域。
1. 成长性
根据全球互连指数第3卷,预计通过数据中心进行私人交换数据的能力的全球增长速度预计为51%。这意味着人们迫不及待地想建立能够满足当前需求的数据中心。而将会预见一个日益连通的世界,并为未来几年人们期望的需求建模。那些对未来有短期看法的人会为此后悔。
2. 可持续发展
专家预计,到2020年,数据中心运营商将开始根据积极的外部性来规划其可持续性投资。而不是专注于消除负面影响。在全球范围内,企业正在更加认真地考虑其碳足迹,这已扩展到其数据中心的功耗。
对于数据中心运营商来说,这是一个至关重要的领域,它需要不断创新以减少能耗,并使用可再生能源来满足对功率密集型新技术的需求。
在Equinix公司委托的2,450多名IT决策者进行的独立全球调查中,有45%的受访者表示他们的客户希望他们证明IT基础设施的可持续性。39%的人还说,IT基础设施的碳影响是其IT战略的核心。
3. 测量
如果没有详细了解数据中心的实时性能,则很难计划最佳效率。以分析平台为后盾,使企业能够根据观察到的结果采取行动。能源使用效率(PUE)是一项重要的行业指标,但到2020年,运营商将开始着眼于能源使用效率(PUE)之外的问题。随着数据中心及其支持的社区之间的联系越来越紧密,其解决方案将不断创新。
机器学习将使人们的基础设施能够进行实时调整,而根本不需要人工交互,但在解释结果时,它能否取代人类吗?
4. 责任
数据中心行业中的所有工作人员都必须为自己的未来承担集体责任,并通过创新合作解决一些紧迫的挑战。设计必要的解决办法不能单独进行;必须分享经验教训,以取得可持续的进展。未来数据中心的效率将完全取决于优化大楼内的设备,使其能够最大程度地满足数字需求。
5. 机器学习
最大的挑战之一是如何捕获数据中心实际创建的所有数据。这是一个复杂的过程。使用人工智能(AI)可以使人们快速找到模式并优化数据中心,从而使经验丰富的工程团队能够迅速实施新策略来优化设施。
正在开发工具,使客户能够实时在线访问与其占用的机架空间有关的环境和操作信息(Equinix公司的IBXSmartView监视电气和机械基础设施,以不断更新关于最有效和可靠操作的见解)。预计到2020年,越来越多的最终用户将使用此类信息来自动化与设施运营商的更多互动。为两者创造新的效率。
6. 技术与基础设施
无论是燃料电池、冷却系统还是大型储能/电池组,正在开发大量技术来为永远在线的数据中心重新定义的未来提供动力。一些预测表明,到2025年,数据中心将使用全球4.5%的能源,而不断增长的能源成本意味着,即使效率略有提高,也可以节省大量成本,并减少数百万吨的碳排放量。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04在CDA(Certified Data Analyst)数据分析师的工作链路中,数据读取是连接原始数据与后续分析的关键桥梁。如果说数据采集是“获 ...
2026-01-04尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31