京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者 | Kenneth
数字时代最先进的技术之一就是大数据技术。大数据不是一个流行的术语,而是用来描述规模庞大、随时间急剧变大的数据集合的术语。这意味着该数据很庞大,传统管理工具都无法分析、存储或处理它。
大数据不仅仅是个术语。它与机器学习、人工智能、区块链、物联网和增强现实等其他技术密切相关。因此,许多行业已经在大数据分析技术方面作了投入,比如银行、离散制造和流程制造等行业。
为了进一步了解这项数据技术,下面列出了你在2020年不可不知的十大大数据技术。
数据湖是个庞大的数据存储库,从不同来源收集数据,并以自然状态存储起来。切莫与数据仓库混为一谈,数据仓库基本上执行同样的功能,但不像数据湖那样以自然状态存储数据,而是对数据明确结构以便存储起来。
为了进一步了解两者之间的区别,不妨打个比方:数据湖如同未经过滤的河水,而数据仓库更像是一堆瓶装水。
Apache Hadoop可能不如以前那么流行,但说到大数据免不了要提到这项技术。这种开源框架用于大数据集的分布式处理。它已发展得很庞大,足以容纳相关软件的整个生态系统,许多商业大数据解决方案基于Hadoop。
数据库管理员经常查询、处理和管理存储在关系数据库管理系统(RDMS)中的结构化数据。
另一方面,NoSQL数据库存储非结构化数据并提供快速性能。这意味着它在处理众多类型的海量数据的同时提供了灵活性。NoSQL数据库的几个例子包括MongoDB、Redis和Cassandra。
Apache Spark是一种用于在Hadoop中处理大量数据的引擎,比Hadoop的标准引擎MapReduce快100倍。人们对这项技术的兴趣正变得越来越浓厚。
人工智能不是一项新技术,但这些年来它已证明了其实用性。在许多方面,大数据通过人工智能的两个分支:机器学习和深度学习在推动人工智能的发展方面发挥了作用。
众所周知,机器学习是指计算机无需繁琐的编程就能够学习。将这应用到大数据分析中,机器学习使系统能够查看历史数据、识别模式、构建模型、预测未来结果,并且主要与预测分析技术有关。
另一方面,深度学习是一种模仿人脑工作原理的机器学习,它创建人工神经网络,使用多层算法来分析数据。在大数据技术中,它让分析工具得以识别图像和视频中的内容,然后进行相应处理。
区块链主要用于支付和托管等功能,可以加快交易、减少欺诈并提高财务安全性。它也是比特币采用的分布式数据库技术。
由于高度安全,区块链对敏感行业的大数据应用系统而言是出色的选择。
如果大数据分析解决方案可以在内存中处理数据,而不是像传统数据库那样需要将数据存储在硬驱上,这可以大大改善性能。这个过程就是内存数据库的工作原理。许多领先的软件企业在采用这项技术,肯定会在2020年大行其道。
作为大数据分析的一个子集,预测分析试图通过历史数据预测未来的事件或行为。它通过数据挖掘、建模和机器学习技术来预测接下来会发生什么。
最近,人工智能领域的进步已结合了预测分析解决方案功能方面的广泛改进。这就是为什么越来越多的行业开始对这项技术进行投入。
R是一个开源项目,就像Hadoop生态系统。它是一种用于处理统计信息的编程语言和软件环境。Eclipse和Visual Studio等集成开发环境支持这种语言。
几家组织称,R已成为世界上最受欢迎的语言之一。
规范性分析为公司提供了建议,以帮助它们实现预期的结果。很少有企业对这种大数据技术进行了投入,不过许多分析师认为,规范性分析是下一个投入的领域,企业尝到该分析工具的甜头后更是如此。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23