京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者 | Kenneth
数字时代最先进的技术之一就是大数据技术。大数据不是一个流行的术语,而是用来描述规模庞大、随时间急剧变大的数据集合的术语。这意味着该数据很庞大,传统管理工具都无法分析、存储或处理它。
大数据不仅仅是个术语。它与机器学习、人工智能、区块链、物联网和增强现实等其他技术密切相关。因此,许多行业已经在大数据分析技术方面作了投入,比如银行、离散制造和流程制造等行业。
为了进一步了解这项数据技术,下面列出了你在2020年不可不知的十大大数据技术。
数据湖是个庞大的数据存储库,从不同来源收集数据,并以自然状态存储起来。切莫与数据仓库混为一谈,数据仓库基本上执行同样的功能,但不像数据湖那样以自然状态存储数据,而是对数据明确结构以便存储起来。
为了进一步了解两者之间的区别,不妨打个比方:数据湖如同未经过滤的河水,而数据仓库更像是一堆瓶装水。
Apache Hadoop可能不如以前那么流行,但说到大数据免不了要提到这项技术。这种开源框架用于大数据集的分布式处理。它已发展得很庞大,足以容纳相关软件的整个生态系统,许多商业大数据解决方案基于Hadoop。
数据库管理员经常查询、处理和管理存储在关系数据库管理系统(RDMS)中的结构化数据。
另一方面,NoSQL数据库存储非结构化数据并提供快速性能。这意味着它在处理众多类型的海量数据的同时提供了灵活性。NoSQL数据库的几个例子包括MongoDB、Redis和Cassandra。
Apache Spark是一种用于在Hadoop中处理大量数据的引擎,比Hadoop的标准引擎MapReduce快100倍。人们对这项技术的兴趣正变得越来越浓厚。
人工智能不是一项新技术,但这些年来它已证明了其实用性。在许多方面,大数据通过人工智能的两个分支:机器学习和深度学习在推动人工智能的发展方面发挥了作用。
众所周知,机器学习是指计算机无需繁琐的编程就能够学习。将这应用到大数据分析中,机器学习使系统能够查看历史数据、识别模式、构建模型、预测未来结果,并且主要与预测分析技术有关。
另一方面,深度学习是一种模仿人脑工作原理的机器学习,它创建人工神经网络,使用多层算法来分析数据。在大数据技术中,它让分析工具得以识别图像和视频中的内容,然后进行相应处理。
区块链主要用于支付和托管等功能,可以加快交易、减少欺诈并提高财务安全性。它也是比特币采用的分布式数据库技术。
由于高度安全,区块链对敏感行业的大数据应用系统而言是出色的选择。
如果大数据分析解决方案可以在内存中处理数据,而不是像传统数据库那样需要将数据存储在硬驱上,这可以大大改善性能。这个过程就是内存数据库的工作原理。许多领先的软件企业在采用这项技术,肯定会在2020年大行其道。
作为大数据分析的一个子集,预测分析试图通过历史数据预测未来的事件或行为。它通过数据挖掘、建模和机器学习技术来预测接下来会发生什么。
最近,人工智能领域的进步已结合了预测分析解决方案功能方面的广泛改进。这就是为什么越来越多的行业开始对这项技术进行投入。
R是一个开源项目,就像Hadoop生态系统。它是一种用于处理统计信息的编程语言和软件环境。Eclipse和Visual Studio等集成开发环境支持这种语言。
几家组织称,R已成为世界上最受欢迎的语言之一。
规范性分析为公司提供了建议,以帮助它们实现预期的结果。很少有企业对这种大数据技术进行了投入,不过许多分析师认为,规范性分析是下一个投入的领域,企业尝到该分析工具的甜头后更是如此。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27