
作者 | 读芯术来源 | AI_Discovery(ID)
人生苦短,我学Python;
人生漫漫,Python是岸!
二十年前的全民学英语风潮,如今变成了“学 Python”。
当代人的知识焦虑中,这门叫 Python 的语言逐渐成为主流。朋友圈、QQ空间随便一刷就出现的「Python 训练营」广告,
“每天半小时学习编程,0基础入门。”
“会Python的人,工作都不会太差。追上同龄人,就现在!”
……
诸如此类的。
此外,知乎、贴吧等社区的热议非凡,总给人一种全民学 Python 的错觉。
是错觉吗?
好像也不是,毕竟连地产大亨潘石屹都把学习 Python 当作自己的“人生礼物”,
浙江都已经把 Python 纳入信息技术高考科目了,这股风潮似乎有愈演愈烈之势。
随着人工智能和机器学习的发展,Python大火,情理之中。
但是你知道吗,Python其实并不年轻,早在1991年,它就诞生了。
最让人难以置信的是,Python实际上出自一个人之手——开发者荷兰程序员Guido van Rossum。
众所周知,大多数编程语言都由大型公司雇佣大量专业人员集体研发而成。在这种意义上,Python是独一无二的!
当然,开发者Russum并没有独自开发和完善Python的所有组件。这是一个开源项目,数千人曾在其中协助开发。尽管Python在数年的时间内不断演化,但人们选择它的目的始终相似。
开发Python的主要目的是帮助程序员编写清晰、有逻辑的程序,满足各种大小的项目的需求。这也是为什么Python如此受开发者欢迎。Python功能全面,可用于网页开发、游戏开发、配置服务器、执行科学计算和数据分析。
近年来,Python的普及率在众多编程语言中快速增长。由Stack Overflow发起的有关各个编程语言使用率的调查表明,Python的使用率不断攀升,已经超过众多竞争者登上榜首。
你知道吗?Python正和Netflix强强联合。
所以,这些年到底发生了什么?Python的热度怎么涨得这么快?
现在我来介绍那些促成了当今Python语言盛世的技术。
人工智能和机器学习的发展程度已远超出科幻小说。
正如ChrisDuffey在SuperhumanInnovation一书中所言,
“限制人工智能的只有人类的想象力。”
当今高密度数据不断扩张,人工智能和机器学习承担起过去人们似乎无法完成的任务。所有的科技巨头(Facebook,Microsoft,Google和Amazon)都在投入大量时间和精力开发人工智能和机器学习领域,并做出了贡献。
研究表明,人工智能和机器学习从业者更喜欢使用Python,因为它编写简单、便于阅读,使技术员们不再为复杂的编程语言结构所困扰。
全世界充斥着数据。席卷全球的数据狂风的规模也日渐扩张。现在我们的一举一动都能生成数据。所有行为,从社交网站上的图片和评论,到网页浏览记录和网上购物行为,再到股票价格和天气预报,都会被记录在案。
预计到2020年,人们每天将产出44字节大小的数据,这个数字比宇宙中可观测恒星总数多40倍。但是不经收集、整理或分析的数据,就是对社会利益无用的数据。因此,我们需要数据科学。
Python在数据科学运转周期中扮演者举足轻重的角色。如今的Python社区成功开发出诸如Numpy,Pandas, sci-kit-learn等优秀的数据分析库,用于处理数据。Python丰富的功能,让它能胜任收集数据、清理数据集、提取重要特征、构建机器学习模型和生成可视化数据图表等任务。
“数据科学家的工作只会越来越时髦”,经济学家兼Indeed求职网报告作者AndrewFlowers说。“越来越多的用人单位开始雇佣数据科学家”。
Github每年都会开展一次调研。2018年,来自TheState of the Octoverse的报告向我们展示了近年来Python的使用量是如何上升的。
Python现已深入Spotify,Netflix, Quora, Facebook和Google这类大公司的开发活动中。Google一直支持Python编程,现在它已经是官方的服务器端语言了。他们还把许多原本用Bash或者Perl编写的程序转写成了Python。
Google研究总监PeterNorvig说,
“Python始终是Google系统的重要部分,在系统扩张演化之后还是如此。现在数十个Google工程师都在使用Python,我们需要更多掌握这一编程语言的人才。”
Spotify和Netflix同样十分依赖Python,这两家公司借此分析服务器端处理的海量数据。分析数百万订阅者的信息,有助于针对每位用户产生更好的推送内容,后者也是Spotify和Netflix能坐拥数十亿收入的原因。
Python早已不是什么新生编程语言,它经过了多年的发展,始终领先,也将在未来保持着优势地位。这便是Python世界,IT行业正身在其中。
多花一些时间学习Python编程,未来的你定将收获颇丰。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28