京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者 | 读芯术来源 | AI_Discovery(ID)
人生苦短,我学Python;
人生漫漫,Python是岸!
二十年前的全民学英语风潮,如今变成了“学 Python”。
当代人的知识焦虑中,这门叫 Python 的语言逐渐成为主流。朋友圈、QQ空间随便一刷就出现的「Python 训练营」广告,
“每天半小时学习编程,0基础入门。”
“会Python的人,工作都不会太差。追上同龄人,就现在!”
……
诸如此类的。
此外,知乎、贴吧等社区的热议非凡,总给人一种全民学 Python 的错觉。
是错觉吗?
好像也不是,毕竟连地产大亨潘石屹都把学习 Python 当作自己的“人生礼物”,
浙江都已经把 Python 纳入信息技术高考科目了,这股风潮似乎有愈演愈烈之势。
随着人工智能和机器学习的发展,Python大火,情理之中。
但是你知道吗,Python其实并不年轻,早在1991年,它就诞生了。
最让人难以置信的是,Python实际上出自一个人之手——开发者荷兰程序员Guido van Rossum。
众所周知,大多数编程语言都由大型公司雇佣大量专业人员集体研发而成。在这种意义上,Python是独一无二的!
当然,开发者Russum并没有独自开发和完善Python的所有组件。这是一个开源项目,数千人曾在其中协助开发。尽管Python在数年的时间内不断演化,但人们选择它的目的始终相似。
开发Python的主要目的是帮助程序员编写清晰、有逻辑的程序,满足各种大小的项目的需求。这也是为什么Python如此受开发者欢迎。Python功能全面,可用于网页开发、游戏开发、配置服务器、执行科学计算和数据分析。
近年来,Python的普及率在众多编程语言中快速增长。由Stack Overflow发起的有关各个编程语言使用率的调查表明,Python的使用率不断攀升,已经超过众多竞争者登上榜首。
你知道吗?Python正和Netflix强强联合。
所以,这些年到底发生了什么?Python的热度怎么涨得这么快?
现在我来介绍那些促成了当今Python语言盛世的技术。
人工智能和机器学习的发展程度已远超出科幻小说。
正如ChrisDuffey在SuperhumanInnovation一书中所言,
“限制人工智能的只有人类的想象力。”
当今高密度数据不断扩张,人工智能和机器学习承担起过去人们似乎无法完成的任务。所有的科技巨头(Facebook,Microsoft,Google和Amazon)都在投入大量时间和精力开发人工智能和机器学习领域,并做出了贡献。
研究表明,人工智能和机器学习从业者更喜欢使用Python,因为它编写简单、便于阅读,使技术员们不再为复杂的编程语言结构所困扰。
全世界充斥着数据。席卷全球的数据狂风的规模也日渐扩张。现在我们的一举一动都能生成数据。所有行为,从社交网站上的图片和评论,到网页浏览记录和网上购物行为,再到股票价格和天气预报,都会被记录在案。
预计到2020年,人们每天将产出44字节大小的数据,这个数字比宇宙中可观测恒星总数多40倍。但是不经收集、整理或分析的数据,就是对社会利益无用的数据。因此,我们需要数据科学。
Python在数据科学运转周期中扮演者举足轻重的角色。如今的Python社区成功开发出诸如Numpy,Pandas, sci-kit-learn等优秀的数据分析库,用于处理数据。Python丰富的功能,让它能胜任收集数据、清理数据集、提取重要特征、构建机器学习模型和生成可视化数据图表等任务。
“数据科学家的工作只会越来越时髦”,经济学家兼Indeed求职网报告作者AndrewFlowers说。“越来越多的用人单位开始雇佣数据科学家”。
Github每年都会开展一次调研。2018年,来自TheState of the Octoverse的报告向我们展示了近年来Python的使用量是如何上升的。
Python现已深入Spotify,Netflix, Quora, Facebook和Google这类大公司的开发活动中。Google一直支持Python编程,现在它已经是官方的服务器端语言了。他们还把许多原本用Bash或者Perl编写的程序转写成了Python。
Google研究总监PeterNorvig说,
“Python始终是Google系统的重要部分,在系统扩张演化之后还是如此。现在数十个Google工程师都在使用Python,我们需要更多掌握这一编程语言的人才。”
Spotify和Netflix同样十分依赖Python,这两家公司借此分析服务器端处理的海量数据。分析数百万订阅者的信息,有助于针对每位用户产生更好的推送内容,后者也是Spotify和Netflix能坐拥数十亿收入的原因。
Python早已不是什么新生编程语言,它经过了多年的发展,始终领先,也将在未来保持着优势地位。这便是Python世界,IT行业正身在其中。
多花一些时间学习Python编程,未来的你定将收获颇丰。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27