
作者 | Rekhit Pachanekar来源 | CDA数据分析师
英国数学家,计算机科学家,逻辑学家和密码分析员艾伦·图灵(Alan Turing)推测未来机器会具有智能。
“这就像一个学生,他从老师那里学到了很多东西,但通过自己的工作又增加了很多的东西。当这种情况发生时,我觉得人们有义务将机器视为具有智能。”
为了举例说明机器学习的影响,Man group的AHL Dimension计划是一个51亿美元的对冲基金,部分由AI管理。 该基金开始运作后,到2015年,尽管其管理的资产远远少于该基金,但其机器学习算法却贡献了该基金一半以上的利润。
在阅读了这个博客之后,您将能够理解一些流行的和令人难以置信的机器学习算法背后的基本逻辑,这些算法已经被交易社区所使用,并且作为您踏上创建最佳机器学习算法的基石。他们是:
线性回归的方法最初是在统计学中发展的,用于研究输入和输出数值变量之间的关系,后来被机器学习社区用来基于线性回归方程进行预测。
线性回归的数学表示法是一个线性方程,它结合了一组特定的输入数据(x),以预测该组输入值的输出值(y)。线性方程式为每组输入值分配一个系数,这些系数用希腊字母Beta(β)表示。
下面提到的方程式表示具有两组输入值x1和x2的线性回归模型。y表示模型的输出,β0,β1和β_2是线性方程的系数。
y = β0+ β1x1+ β2x2
当只有一个输入变量时,线性方程式表示一条直线。为了简单起见,考虑β2是等于零,这将意味着,变量x2不会影响线性回归模型的输出。在这种情况下,线性回归将代表一条直线,其等式如下所示。
y = β0+ β1x1
线性回归方程模型的图形如下所示
线性回归可以用来发现股票在一段时间内的总体价格趋势。这有助于我们了解价格变动是正向是负向的。
在逻辑回归中,我们的目标是产生一个离散值,即1或0。这有助于我们找到一种确定的方案答案。Logistic回归可以用数学表示为:
逻辑回归模型类似于线性回归来计算输入变量的加权和,但是它通过特殊的非线性函数,逻辑函数或S形函数运行结果,以产生输出y。
S形/逻辑函数由以下方程式给出。
y = 1 / (1+ e-x)
简单地说,logistic回归可以用来预测市场的走向。
K最近邻(KNN)分类的目的是将数据点分为不同的类别,以便我们可以基于相似性度量(例如距离函数)对它们进行分类。
从某种意义上说,KNN不需要一个明确的训练学习阶段,而是由相邻数据点的多数票决定来进行分类。从而将目标数据点分配给在其k个最近的相邻样本中某类别数量最多的类。
让我们考虑将下面图片中的绿色圆圈分为1类和2类的任务。考虑基于1个最近邻居的KNN的情况。在这种情况下,KNN将绿色圆圈分类为1类。现在,让我们将最近邻居的数量增加到3,即3最近邻居。正如您在图中看到的那样,圆圈内有“两个” 2类对象和“一个” 1类对象。KNN将绿色圆圈归为2类对象,因为它形成了大多数对象。
支持向量机(SVM)最初是用于数据分析。首先一组训练实例被输入到SVM算法中,它们分别属于一类别或另一个类别。然后,该算法可以构建一个模型,并开始将新的测试数据分配给它在训练阶段学习到的类别之一。
在支持向量机算法中,创建了一个超平面,该超平面用作类别之间的分界。当支持向量机算法处理一个新的数据点时,根据它出现的某一侧,它将被分类为一种类别。
当涉及到交易时,可以建立支持向量机算法,将股票数据分类为有利的买入、卖出或中性类,然后根据规则对测试数据进行分类。
决策树是一种类似于树的支持决策的工具,可以用来表示因果关系。由于一个原因可能会有多种影响,因此我们将其列出来,非常像带有分支的树。
我们可以通过组织输入数据和预测变量,并根据我们指定的一些标准来构建决策树。
建立决策树的主要步骤是:
随机森林由决策树组成,决策树是代表决策过程或统计概率的决策图。这些多个树映射到单个树,称为分类或回归(CART)模型。
为了基于对象的属性对目标对象进行分类,每棵树都给出了一个分类,该分类被称为对该类“投票”。然后,森林选择投票数最多的类别。对于回归树来说,它考虑了不同树的输出的平均值来进行回归。
随机森林算法的工作方式如下:
在我们探索世界的过程中,人工神经网络是我们的最高成就之一。如图所示,我们已经创建了多个相互连接的节点,每个圆形节点代表一个人工神经元,箭头代表从一个神经元的输出到另一个神经元的输入的连接。它们模仿了我们大脑中的神经元。简单来说,每个神经元都通过另一个神经元来获取信息,对其进行处理,然后将其作为输出传递给另一个神经元。
如果我们使用神经网络来发现各种资产类别之间的相互依赖关系,而不是尝试预测买入或卖出选择,则神经网络会更有用。
在这种机器学习算法中,目标是根据数据点的相似性对其进行标记(聚类)。因此,我们没有在算法之前定义聚类,而是算法在前进时找到了这些聚类。
一个简单的例子是,根据足球运动员的数据,我们将使用K-means聚类,并根据他们的相似性对其进行标记。因此,即使没有为算法提供预定义的标签,也可以基于前锋对任意球或成功铲球得分的偏好来对足球运动员进行聚类。
K均值聚类对那些认为不同资产之间可能存在表面上看不到的相似性的交易者是非常有用的。
现在,如果您还记得基本概率,您就会知道,贝叶斯定理的表述方式是,假定我们对与前一事件相关的任何事件都具有先验知识。 它是关于随机事件A和B的条件概率(或边缘概率)的一则定理。其中P(A|B)是在B发生的情况下A发生的可能性。 例如,要检查您到办公室迟到的可能性,您可能想知道您在途中是否会遇到任何形式的交通拥堵。
但是,朴素贝叶斯分类器算法假设两个事件是彼此独立的,这在很大程度上简化了计算。最初,朴素贝叶斯定理只是想被用于进行学术研究,但现在看来,它在现实世界中也表现出色。
朴素贝叶斯算法可以在无完整的数据的情况下,用于查找不同参数之间的简单关系。
你知道Siri和Google助手在他们的编程中使用RNN吗?RNN本质上是一种神经网络,它在每个节点上都有一个存储器,这使得处理顺序数据变得容易,即一个数据单元依赖于前一个数据单元。
一种解释RNN优于常规神经网络的优势的方法是,我们应该逐个字符地处理一个单词。如果单词是“ trading”,则正常的神经网络节点会在移动到“ d”时忘记字符“ t”,而递归神经网络会记住该字符,因为它具有自己的记忆。
根据Preqin的一项研究,已知1,360种量化基金在其交易过程中使用计算机模型,占所有基金的9%。如果Quantopian这样的公司在测试阶段赚钱,并且实际上投资自己的钱并在实时交易阶段拿钱,则会为个人的机器学习策略组织现金奖励。因此,为了在竞争中领先一步,每个人,无论是数十亿美元的对冲基金还是个人交易,都在试图在其交易策略中理解和实施机器学习模型。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27