
作者 | Rekhit Pachanekar来源 | CDA数据分析师
英国数学家,计算机科学家,逻辑学家和密码分析员艾伦·图灵(Alan Turing)推测未来机器会具有智能。
“这就像一个学生,他从老师那里学到了很多东西,但通过自己的工作又增加了很多的东西。当这种情况发生时,我觉得人们有义务将机器视为具有智能。”
为了举例说明机器学习的影响,Man group的AHL Dimension计划是一个51亿美元的对冲基金,部分由AI管理。 该基金开始运作后,到2015年,尽管其管理的资产远远少于该基金,但其机器学习算法却贡献了该基金一半以上的利润。
在阅读了这个博客之后,您将能够理解一些流行的和令人难以置信的机器学习算法背后的基本逻辑,这些算法已经被交易社区所使用,并且作为您踏上创建最佳机器学习算法的基石。他们是:
线性回归的方法最初是在统计学中发展的,用于研究输入和输出数值变量之间的关系,后来被机器学习社区用来基于线性回归方程进行预测。
线性回归的数学表示法是一个线性方程,它结合了一组特定的输入数据(x),以预测该组输入值的输出值(y)。线性方程式为每组输入值分配一个系数,这些系数用希腊字母Beta(β)表示。
下面提到的方程式表示具有两组输入值x1和x2的线性回归模型。y表示模型的输出,β0,β1和β_2是线性方程的系数。
y = β0+ β1x1+ β2x2
当只有一个输入变量时,线性方程式表示一条直线。为了简单起见,考虑β2是等于零,这将意味着,变量x2不会影响线性回归模型的输出。在这种情况下,线性回归将代表一条直线,其等式如下所示。
y = β0+ β1x1
线性回归方程模型的图形如下所示
线性回归可以用来发现股票在一段时间内的总体价格趋势。这有助于我们了解价格变动是正向是负向的。
在逻辑回归中,我们的目标是产生一个离散值,即1或0。这有助于我们找到一种确定的方案答案。Logistic回归可以用数学表示为:
逻辑回归模型类似于线性回归来计算输入变量的加权和,但是它通过特殊的非线性函数,逻辑函数或S形函数运行结果,以产生输出y。
S形/逻辑函数由以下方程式给出。
y = 1 / (1+ e-x)
简单地说,logistic回归可以用来预测市场的走向。
K最近邻(KNN)分类的目的是将数据点分为不同的类别,以便我们可以基于相似性度量(例如距离函数)对它们进行分类。
从某种意义上说,KNN不需要一个明确的训练学习阶段,而是由相邻数据点的多数票决定来进行分类。从而将目标数据点分配给在其k个最近的相邻样本中某类别数量最多的类。
让我们考虑将下面图片中的绿色圆圈分为1类和2类的任务。考虑基于1个最近邻居的KNN的情况。在这种情况下,KNN将绿色圆圈分类为1类。现在,让我们将最近邻居的数量增加到3,即3最近邻居。正如您在图中看到的那样,圆圈内有“两个” 2类对象和“一个” 1类对象。KNN将绿色圆圈归为2类对象,因为它形成了大多数对象。
支持向量机(SVM)最初是用于数据分析。首先一组训练实例被输入到SVM算法中,它们分别属于一类别或另一个类别。然后,该算法可以构建一个模型,并开始将新的测试数据分配给它在训练阶段学习到的类别之一。
在支持向量机算法中,创建了一个超平面,该超平面用作类别之间的分界。当支持向量机算法处理一个新的数据点时,根据它出现的某一侧,它将被分类为一种类别。
当涉及到交易时,可以建立支持向量机算法,将股票数据分类为有利的买入、卖出或中性类,然后根据规则对测试数据进行分类。
决策树是一种类似于树的支持决策的工具,可以用来表示因果关系。由于一个原因可能会有多种影响,因此我们将其列出来,非常像带有分支的树。
我们可以通过组织输入数据和预测变量,并根据我们指定的一些标准来构建决策树。
建立决策树的主要步骤是:
随机森林由决策树组成,决策树是代表决策过程或统计概率的决策图。这些多个树映射到单个树,称为分类或回归(CART)模型。
为了基于对象的属性对目标对象进行分类,每棵树都给出了一个分类,该分类被称为对该类“投票”。然后,森林选择投票数最多的类别。对于回归树来说,它考虑了不同树的输出的平均值来进行回归。
随机森林算法的工作方式如下:
在我们探索世界的过程中,人工神经网络是我们的最高成就之一。如图所示,我们已经创建了多个相互连接的节点,每个圆形节点代表一个人工神经元,箭头代表从一个神经元的输出到另一个神经元的输入的连接。它们模仿了我们大脑中的神经元。简单来说,每个神经元都通过另一个神经元来获取信息,对其进行处理,然后将其作为输出传递给另一个神经元。
如果我们使用神经网络来发现各种资产类别之间的相互依赖关系,而不是尝试预测买入或卖出选择,则神经网络会更有用。
在这种机器学习算法中,目标是根据数据点的相似性对其进行标记(聚类)。因此,我们没有在算法之前定义聚类,而是算法在前进时找到了这些聚类。
一个简单的例子是,根据足球运动员的数据,我们将使用K-means聚类,并根据他们的相似性对其进行标记。因此,即使没有为算法提供预定义的标签,也可以基于前锋对任意球或成功铲球得分的偏好来对足球运动员进行聚类。
K均值聚类对那些认为不同资产之间可能存在表面上看不到的相似性的交易者是非常有用的。
现在,如果您还记得基本概率,您就会知道,贝叶斯定理的表述方式是,假定我们对与前一事件相关的任何事件都具有先验知识。 它是关于随机事件A和B的条件概率(或边缘概率)的一则定理。其中P(A|B)是在B发生的情况下A发生的可能性。 例如,要检查您到办公室迟到的可能性,您可能想知道您在途中是否会遇到任何形式的交通拥堵。
但是,朴素贝叶斯分类器算法假设两个事件是彼此独立的,这在很大程度上简化了计算。最初,朴素贝叶斯定理只是想被用于进行学术研究,但现在看来,它在现实世界中也表现出色。
朴素贝叶斯算法可以在无完整的数据的情况下,用于查找不同参数之间的简单关系。
你知道Siri和Google助手在他们的编程中使用RNN吗?RNN本质上是一种神经网络,它在每个节点上都有一个存储器,这使得处理顺序数据变得容易,即一个数据单元依赖于前一个数据单元。
一种解释RNN优于常规神经网络的优势的方法是,我们应该逐个字符地处理一个单词。如果单词是“ trading”,则正常的神经网络节点会在移动到“ d”时忘记字符“ t”,而递归神经网络会记住该字符,因为它具有自己的记忆。
根据Preqin的一项研究,已知1,360种量化基金在其交易过程中使用计算机模型,占所有基金的9%。如果Quantopian这样的公司在测试阶段赚钱,并且实际上投资自己的钱并在实时交易阶段拿钱,则会为个人的机器学习策略组织现金奖励。因此,为了在竞争中领先一步,每个人,无论是数十亿美元的对冲基金还是个人交易,都在试图在其交易策略中理解和实施机器学习模型。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28