京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:Josh Krist, Staff Writer, Workday
在商业流行语中,人工智能似乎是最重要的。每个人都在谈论它,但是实际上有多少人理解它呢?阿贾伊·阿格劳瓦尔(Ajay Agrawal)在这一领域取得了令人难以置信的进步。 由Agrawal,Joshua Gans和Avi Goldfarb撰写的2018年一本书 《预测机器:人工智能的简单经济学》为企业领导者提供了有关如何实现人工智能(AI)价值的可行建议。
本书的作者解释说,就像便宜的电和光,得益于电力或便宜计算,那么更好更快更便宜的预测将摆脱业务模型和流程中的不确定性,并导致整个行业的重新构想。归根结底,AI有望成为具有多样性的变革性通用技术。
在2019年福布斯CIO峰会休息期间,我们在加利福尼亚半月湾一个有雾的下午会见了Agrawal ,并聊了他书中的一些主要学习内容。我们的谈话节选如下。
答:对于他们来说,我最好的建议是将AI视为降低预测成本。当预测或其他任何东西变得更便宜时,我们将使用更多的预测,并开始以更巧妙的方式使用它。
当我与首席执行官和CIO会面时,他们常常会说:“我们有25,000名员工,而我们从事的是这一行业。我们应该从哪里开始使用AI?” 答案通常很简单-您的数据科学小组。该团队已经确定了贵公司的预测问题,并以数字格式存储了数据,并将这些预测集成到了工作流程中。现在,他们要做的就是使用一些新的统计技术,如果有足够的数据,这些技术将生成更好,更快和更便宜的预测。
人工智能只能替代一件事,那就是人类的预测。
观察AI的另一种方式是通过重铸我们以前无法将其视为预测问题的问题,以一种可以通过AI解决它们的方式。例如,我们有很多来自大型组织的人力资源主管来到我们位于多伦多的Creative Destruction Lab,他们会说:“我们想弄清楚要寻找什么技能,我们应该雇用谁以及如何提高我们现有人的技能。” 然后,在单独的对话中,我们将听到业务领导者说:“我们在销售,市场营销和制造中都需要AI。除人力资源外,我们在大多数地方都需要AI。”
大多数人认为,由于HR是非常人性化的并且需要大量的情商,因此它不需要AI。错了,人们可以通过将诸如招聘和技能开发的某些方面的人力资源功能转换为一系列预测来利用AI,然后人们可以运用他们的判断力。
答:这真的很重要,因为很多人对此感到非常威胁。但是,人工智能只能替代一件事,这是人类的预言。
所有人类的预测都容易被机器所取代。但是,人类还有许多其他有价值的事情,它们是对预测的补充而不是替代。正如我们刚才提到的,判断力的一个方面是-人有判断力,而AI没有。人们在任何地方部署判决时,该判决的价值都会上升,因为我们可以将其应用于越来越高的保真度预测中。
这是一个比喻:假设有两名会计师面试同一份工作。其中一位非常擅长快速准确地将脑袋中的数字相加。另一位会计师的判断力很好,他擅长问一些聪明的问题,例如:“当利率上升四分之一时,我们的业务将会怎样?”
面试官可能对第一会计师说:“您具有宝贵的技能,可以快速,准确地将数字累加到您的脑海中,因此您将节省很多时间。” 对于第二人,面试官可能会说:“拥有这种判断能力真是太好了,但是每次您提出一个聪明的问题时,我们都需要三天的时间来回答。这是很有趣的技能,但它的价值有限。”
然后是电子表格,由于机器均衡,第一个人的价值下降了。快或慢将数字加起来都没关系。该机器比任何人都更快,更准确。
然而,第二会计师仍然有良好的判断力。他的价值不断提高,因为现在每次遇到一个聪明的问题时,他只需要在电子表格中更改一个单元格即可找到答案,而不是花三天时间回答问题。
答:是的,判断可以量化。如果机器能够观察到足够多的人根据其预测采取行动,那么它就可以开始推断我们的判断并进行预测。但是,这总是一场军备竞赛。随着AI观察到许多判断,并将其转化为预测,然后我们可以将判断应用于这些预测。审判将仍然是人类的游戏。
答:我最近在东京,对这么多大型国际公司用日语开展业务感到惊讶。甚至他们的高级管理人员也不会说英语,因此很多次会议期间都必须有口译员在场。我想:“哇,我们在语言上确实很分离。当我们最终获得可以即时翻译的商业级翻译器时,这些障碍将逐渐消失。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11