京公网安备 11010802034615号
经营许可证编号:京B2-20210330
想要在职场中站稳脚步,掌握一门硬技术是非常重要的事情。顺应时代发展,抓住新的机遇,在如今市场经济不景气的2020年显得尤为重要。数数当下比较热门或高涨的行业,当属数据分析和人工智能领域,若想进入数据分析或AI行业,就一定要掌握其必备的基本要领,而这项本领就是Python。Python是数据分析或人工智能不能缺少的语言。
下面给大家普及普及为何Python技能是不能缺少的:
1、提供强大的支持:Python这门编程语言无论是对大数据分析,还是人工智能中至关重要的机器学习、深度学习,都具有非常强大的支持。
2、应用范围广泛:Python可以从业的方向有很多,数据分析和人工智能从全社会来看还只是Python其中的一个应用方向,它可以从事的领域不仅仅如此,在职场中Python还可以进行编程爬虫、web开发、运维、测试、工程师等,适合不同人的选择,满足大家的需求。
3、简单容易协作:Python被大家称为胶水语言,不仅可以粘合用Python写的各种模块,还可以将其他语言制作的各种模块联合在一起,进行协调运作。
4、对初学者友好:Python在实现各个功能的过程中,要比其他的编程语言更简单友好,很多功能Python只需要几行代码搞定的事情,而别的编程语言可能需要十几行或者更多的代码才可以搞定。
5、免费的代码库:Python的背后有庞大免费的代码库,让Python成为了开发效率最高、对初学者十分友好的工具。同时很多企业都看中了Python的技能,Python的人才需求量是非常庞大的。
接下来好好给大家梳理一下,学习完Python之后可以的工作主要都有哪些。
1、人工智能:Python语言是人工智能时代的首选语言,人工智能的时代即将到来,也会带领大家进入一个全新的时代之中。在Python语言中,人工智能是非常主要的发展方向,也是非常具有潜力和发展前景的,薪资待遇也是非常高的,根据市场上的就业情况来说,Python人工智能的就业薪资普遍达到了20K以上,即便是初级工程师薪资待遇也可以达到1w左右。
2、数据分析:在大量数据的基础上,结合科学计算、机器学习等技术,对数据进行清洗、去重、规格化和针对性的分析是大数据行业的基石。Python是数据分析的主流语言之一。
3、大数据:数据已经成为了我们生活中非常重要的一部分,大数据技术已经融入到我们的日常生活之中,虽然还没有完全的应用,但是在多个行业都已经开始崭露头角了,Python语言在数据分析上相对于是非常具有优势的,非常的具有效率,虽然学习起来比较难一些,但是可以与Python进行有效的对接。在市场数据分析工程师就业薪资水平也是非常高的,一直都处于不断上升的趋势之中。
4、爬虫工程师:爬虫在我们的生活中一直都是应用非常广泛的,网络爬虫是数据采集的关键,作用是非常明显的。Python因为具有独特的优势所在,可以很快提升对数据抓取程度,目前爬虫工程师的薪资待遇也是非常高的,可以达到15k左右。
5、web开发:基于web开发的框架不是很多,比如说Django,还有Tornado,Flask。其中的Python+Django应用范围是非常广泛的,开发速度也是非常快速的,学习门槛很低,可以帮助我们提供工作的效率。
很多人觉得,Python比较简明易学、可读性好,易维护,学习成本和时间相对较短,更适合小白的话,真的是这样的吗?我们来看一组数据:
在这100offer的简历数据库中,仅有Python开发经验的人占34%;相比之下,同时拥有后端、移动端、前端等非Python语言开发岗的程序员最多,占比高达36%。
可见,Python能够同时适合小白和想转型的在职人群。
下面这份学习清单,请你好好查收!
疫情防控的当下,我们被迫成为了“宅男”“宅女”,。这个时候,我们除了坐着、躺着、刷着,让自己的体重增加之外,或者我们还可以增值一下自己。有人说,”一切终将过去,但过去之后,有的人依然停留在原地,有的人已经迭代升级“。疫情面前,我们一起面对,一齐跨越;2020这个春节,我们共克时艰,迎接春天的到来;春天终将到来,在春来到来之前,先让我们好好学习Python,待回归职场或大学之后,我们已是那个更好的自己!
【职场背景】
企业想要在竞争激烈的市场中胜出,决策的速度和反应的效率尤为重要。根据调查显示,75%的企业在面临拟定策略时,常常无法获得实时且有根据的决策信息。什么样的数据、要透过什么样的方法,才能快速且实时的转变成决策时有用的信息,是现代企业所面临最迫切性的问题。
Python集训包含Python基础 – Pandas数据清洗 - Python爬虫 - Python数据可视化(Matplotlib、Seaborn、Pyecharts) - Python机器学习算法等内容,并结合互联网金融、电信、银行、医疗、交通等行业实际案例来建立整套的数据分析和机器学习思路,案例涉及营销优化、风险控制、用户研究、商业部署等领域,更符合企业要求。
【技能掌握】
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27