京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者 | CDA数据分析师
在数据选择之前是要把所有的菜品都洗好并放在不同的容器里。现在要进行切配了,需要把这些菜品挑选出来,比如做一盘凉拌黄瓜,需要先把黄瓜找出来;要做一盘可乐鸡翅,需要先把鸡翅找出来。
数据分析也是同样的道理,你要分析什么,首先要把对应的数据筛选出来。
常规的数据选择主要有列选择、行选择、行列同时选择三种方式。
1、选择某一列/某几列
(1)Excel实现
在Excel中选择某一列直接用鼠标选中这一列即可;如果要同时选择多列,且待选择的列不是相邻的,这个时候就可以先选中其中一列,然后按住Ctrl键不放,再选择其他列。举个例子,同时选择客户姓名和成交时间这两列,如下图所示:
(2)Python实现
在Python中我们想要获取某列只需要在表df后面的方括号中指明要选择的列名即可。如果是一列,则只需要传入一个列名;如果是同时选择多列,则传入多个列名即可,多个列名用一个list存起来。

在Python中我们把这种通过传入列名选择数据的方法称为普通索引。
除了传入具体的列名,我们还可以传入具体列的位置,即第几列,对数据进行选取,通过传入位置来获取数据时需要用到iloc方法。
在上面的代码中,iloc后的方括号中逗号之前的部分表示要获取行的位置,只输入一个冒号,不输入任何数值表示获取所有的行;逗号之后的方括号表示要获取的列的位置,猎德位置同样是也是从0开始计数。
我们把这种通过传入具体位置来选择数据的方式称为位置索引。
2、选择连续的某几列
(1)Excel实现
在Excel中,要选择连续的几列时,直接用鼠标选中这几列即可操作。当然了,你也可以先选择一列,然后按住Ctrl键再去选择其他列,由于要选取的列时连续的,因此没有必要这么麻烦。
(2)Python实现
在Python中可以通过前面介绍的普通索引个位置索引获取某一列或多列的数据。当你要获取的是连续的某几列,用普通索引和位置索引也是可以做到的,但是因为你要获取的列是连续的,所以只要传入这些连续列的位置区间即可,同样需要用到iloc方法。
在上面的代码中,iloc后的方括号中逗号之前的表示选择的行,当只传入一个冒号时,表示选择所有行;逗号后面表示要选择列的位置区间,0:3表示选择第1列到第4列之间的值(包含第1列单不包含第4列),我们把这种通过传入一个位置区间来获取数据的方式称为切片索引。
1、选择某一行/某几行
(1)Excel实现
在Excel中选择行与选择列的方式是一样的,先选择一行,按住Ctrl键再选择其他行。
(2)Python实现
在Python中,获取行的方式主要有两种,一种是普通索引,即传入具体行索引的名称,需要用到loc方法;另一种是位置索引,即传入具体的行数,需要用到iloc方法。
为了看的更清楚,我们对行索引进行自定义。
2、选择连续的某几行
(1)Excel实现
在Excel中选择连续的某几行与选择连续的某几列的方法一致,不在赘述。
(2)Python实现
在Python中,选择连续的某几行时,你同样可以把要选择的每一个行索引名字或者行索引的位置输进去。很显然这是没有必要的,只要把连续行的位置用一个区间表示,然后传给iloc即可。
3、选择满足条件的行
前面说到获取某一列时,获取的是这一列的所有行,我们还可只筛选出这一列中满足条件的值。
比如年龄这一列,需要把非异常值(大于200的属于异常值),即小于200岁的年龄筛选出来,该怎么实现呢?
(1)Excel实现
在Excel中我们直接使用筛选功能,将满足条件的值筛选出来,筛选方法如下图所示:
筛选年龄小于200的数据前后的对比如下图所示:。
(2)Python实现
在Python中,我们直接在表名后面指明哪列要满足什么条件,就可以把满足条件的数据筛选出来。
我们把上面这种通过传入一个判断条件来选择数据的方式称为布尔索引。
传入的条件也可以是多个,如下为选择的年龄小于200且唯一识别码小于102的数据。
上面的数据选择都是针对单一的行或者列进行选择,实际业务中我们也会用到行、列同时选择,所谓的行、列同时选择就是选择出行和列的相交部分。
例如,我们要选择第二、三行和第二、三列相交部分的数据,下图中的阴影部分就是最终的选择结果。
行列同时选择在Excel中主要是通过鼠标拖拽实现的,与前面的单一行/列选择方法一致,此处不再赘述,接下来主要讲讲在Python中是如何实现的。
1、普通索引+普通索引选择指定的行和列
位置索引+位置索引是通过同时传入行、列索引的位置来获取数据,需要用到iloc方法。
loc方法中的第一对方括号表示行索引的选择,传入行索引的名称;loc方法中的第二对方括号表示列索引的选择,传入列索引的名称。
2、位置索引+位置索引选择指定行和列
位置索引+位置索引是通过同事传入行、列索引的位置来获取数据,需要用到iloc方法。
在iloc方法中的第一对方括号表示行索引的选择,传入要选择行索引的位置;第二对方括号表示列索引的选择,传入要选择列索引的位置。行和列索引的位置都是从0开始计数的。
3、布尔索引+普通索引选择指定的行和列
布尔索引+普通索引是先对表进行布尔索引选择行,然后通过普通索引选择列。
上面的代码表示选择年龄小于200的订单编号和年龄,先通过布尔索引选择出年龄小于200的所有行,然后通过普通索引选择订单编号和年龄这两列。
4、切片索引+切片索引选择指定的行和列
切片索引+切片索引是通过同时传入行、列索引的位置区间进行数据选择。
5、切片索引+普通索引选择指定的行和列
前面我们说过,如果是普通索引,就直接传入行或者列名,用loc方法即可;如果是切片索引,也就是传入行或者列的位置区间,要用iloc方法。如果是切片索引+普通索引,也就是行(列)用切片索引,列(行)用普通索引,这种交叉索引要用ix方法。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04