京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者 | Christopher Dossman
编译 | ronghuaiyang
在我们的机器学习实验室,我们在许多高性能的机器已经积累了成千上万个小时的训练。然而,并不是只有计算机在这个过程中学到了很多东西:我们自己也犯了很多错误,修复了很多错误。
在这里,我们根据我们的经验(主要基于 TensorFlow)提出了一些训练深度神经网络的实用技巧。有些建议对你来说可能是显而易见的,但对我们中的某个人来说却不是。其他的建议可能不适用,甚至对你的特定任务来说是不好的建议:谨慎使用!
我们承认这些都是众所周知的方法。我们也站在巨人的肩膀上!我们这篇文章的目的仅仅是对它们进行高层次的总结,以便在实践中使用。
通用 Tips
调试神经网络
如果你的网络没有学习(意思是:在训练过程中,损失没有收敛,或者你没有得到你期望的结果),试试下面的建议:
用一个例子来学习一下
为了使上面描述的过程更接近实际,这里有一些损失图(通过 TensorBoard 画出来的),用于我们构建的卷积神经网络的一些实际回归实验。
起初,这个网络根本没有学习:
我们尝试对值进行 clipping,以防止它们超出界限:
嗯。看看这些没做平滑的值有多疯狂。学习率太高?我们试着降低学习速度,只对一个输入进行训练:
你可以看到学习率的最初几个变化发生在什么地方(大约在第 300 步和第 3000 步)。显然,我们衰减得太快了。所以,在衰减之前给它更多的时间,它可以做得更好:
你可以看到我们在 2000 步和 5000 步时衰减。这个更好,但仍然不是很好,因为它没有趋近于 0。
然后,我们禁用了学习率衰减,并尝试将值移动到一个更窄的范围内,不过不是通过输入 tanh。虽然这明显使错误值低于 1,但我们仍然不能过拟合训练集:
通过删除 batch normalization,我们发现,在经过一两次迭代之后,网络可以快速输出 NaN。我们禁用了 batch normalization,并将初始化更改为 variance scaling。这些改变了一切!我们能够过拟合我们的测试集,只是一个或两个输入。虽然底部的图表盖住了 Y 轴,但初始误差值远远高于 5,表明误差减少了近 4 个数量级:
上面的图表非常平滑,但是你可以看到它与测试输入过拟合的速度非常快,随着时间的推移,整个训练集的损失降到了 0.01 以下。这并没有降低学习率。在学习率下降一个数量级后,我们继续训练,得到了更好的结果:
这些结果好多了!但是如果我们以几何的方式衰减学习率而不是把训练分成两部分呢?
将每一步的学习率乘以 0.9995,结果并不好:
大概是因为衰减太快了,乘数为 0.999995 的情况要好一些,但结果几乎等于完全不衰减。我们从这个特殊的实验序列中得出结论,batch normalization 隐藏了糟糕的初始化所导致的急剧变化的梯度,降低学习率对 ADAM 优化器并没有特别的帮助,除了在最后可能会故意降低。与 batch normalization 一起,clipping 只是掩盖了真正的问题。我们还通过将高方差输入值放入 tanh 来处理它们。
我们希望随着你对构建深度神经网络越来越熟悉,你会发现这些基本技巧非常有用。通常,只是一些简单的事情就能改变一切。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16