
作者 | 诸葛君
来源 | 诸葛io数据教练
什么是假设分析法?
在解释假设分析法之前,我们来做一道小学6年级的数学题:
“小明和妈妈买了10本书,正好花了100块钱,书的单价有8块钱和13块钱2种,那么8块钱的书和13块钱的书各买了几本?
解题思路:
首先,假设这10本书都是8块钱买的,那么10本书一共是80块钱,那还多出来20块钱,是算错账了么?不是,显然多出来那20是13块钱1本的书多出来的。13块钱的书比8块钱的书每本多了5块钱,20块钱可以买4本,那么可以得出结论了,13块钱的书有4本,那么8块钱的书有几本呢?
对了,6本,真棒,奖励你1朵小红花。
这道6年级的数学题里就用到了假设法,假设所有书都是8块钱,那么在数据分析中,什么是假设法呢?简单理解,假设法是在已知结果数据,在影响结果的多个变量中假设一个定量,对过程反向推导的数据分析方法。
嗯,这么说其实一点都不简单。
假设法在运营分析中怎么用?
假设法在运营分析中最常见的有2种场景:
1.已知结果找原因,做过程变量假设;
2.结果导向做计划,做结果数据假设。
假设法的真正用途是针对未知因素提出假设,在数据推导中验证假设的真伪。
场景一:已知结果找原因,做过程变量假设
例如:某内容社区在11月份的发帖数相比10月份下降了20%,针对这个结果,该如何分析原因?
面对这样一个无厘头的问题,该怎么分析呢?结果数据是发帖数下降了20%,那么影响发帖数的有哪些因素呢?
我们可以将发帖数量按照用户分层进行拆分,例如老用户发帖数量和新用户发帖数量,也可以按照具体发帖篇数进行拆分,例如发帖5篇以上的用户,发帖3-5篇的用户,发帖1-3篇的用户,拆分后将11月与10月份相同维度的数据进行对比,找出变量。
例如经过拆解后发现,发帖1-3篇的用户相比10月份减少了40%,其他篇数的用户量还高于10月份,那么问题就出在了发帖1-3篇的用户身上。
那么发帖1-3篇的用户为什么减少了呢?我们可以提出2个假设:
假设10月份发帖1-3篇的用户成长为更加活跃的用户了,造成发帖3-5篇的用户增加,1-3篇的用户减少;
假设10月份发帖1-3篇的用户流失率比较高,同时11月份新用户转化少,导致这一群组用户数量变少。
那么针对这2个假设,需要对10月份发帖1-3篇的用户与11月份发帖3-5篇及5篇以上的用户进行追踪分析,同时分析11月份新增用户与10月份新增用户在留存和活跃上的对比。
场景二:已知目标找过程,做结果假设
例如:12月份的销售KPI为1000万,环比11月份上升20%,该如何做一份销售方案?
这是在做工作计划时最常见的需求,以12月份需要达成1000万的销售KPI为例,拆分销售KPI的相关影响因素,同样有2个拆解维度:
1.从商品角度做拆分
要达成1000万的销售额,有多种假设方式,例如假设现有商品销售额与11月相同,新品销售额达到200万,那么为了实现这个结果假设,去做能够支持200万销售额的的过程方案,例如在推广渠道预算上、仓储物流上、人力配置上等方面做计划;还可以针对几款产品提出销售额增长的假设;
2.从人群角度做拆分
要达成1000万的销售额,一方面挖掘老客户的购买力,另一方面增加新客户的来源渠道,假设老用户复购销售500万,那么针对老用户设计营销活动。
总结:假设分析法是在现实应用中常用的数据分析思路之一,数据分析的过程是不断的提出假设、验证假设的过程,通常我们遇到的不知道如何下手的数据分析,可以通过假设法来破局。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10