
作者 | Jansfer
来源 | AMiner
Artificial intelligence trends of 2019
2019年给我们带来了一些我们不可以错过的最新人工智能趋势。
人工智能已经风靡全球。它被看作是技术给人类的礼物。现在创造的应用程序、机器等任何事物没有一个是不和人工智能挂钩的。每年我们都会关注人工智能趋势的变化,为下一年树立一个基准。如今,企业致力于将人工智能融入到各种技术形式,并且在健康、农业、建筑和汽车等领域取得了突破性的应用。
人工智能,简称AI,是人类智能在机器中的再创造。科学家们想要通过人工智能,教机器像人类那样思考和决策。在人工智能的帮助下,许多公司尽力提高用户体验,他们几乎把人工智能融入了他们提供的每一个解决方案中。苹果、Facebook、谷歌、微软、IBM和亚马逊都是在研究人工智能方面投入巨资的顶尖公司。
就像它问世后每隔一年一样,2019年也给我们带来了一些我们不可以错过的最新人工智能趋势。下面一起来看一下,2019年最大的人工智能趋势:
01
机器学习也被称为“深度学习”,是一种人工智能应用程序。它允许计算机系统通过从经验中获取知识,然后用同样的方法来处理复杂的计算和功能,从而自动改进其功能。机器不再需要为每个功能单独编程。机器通过数据访问来收集信息并相应地增强学习能力,这使得深度学习成为可能。公司正选择对它们的计算机系统进行深度学习,以提高其性能、结果的准确性,并识别潜在的有害风险。
由于这种人工智能趋势使机器能够迅速做出决定,公司使用机器学习最多的领域包括自动文本生成、计算机视觉和自动驾驶车辆。
02
面部识别
这与我们曾经在电影中所看到的类似,也就是说,面部识别通过是一个人进入限制区域的先决条件。今年这一趋势终于加快了步伐。事实上,面部识别被认为是人工智能行业最大的突破之一,专家们认为这一趋势会继续发展下去,并且这项技术会随着时间的推移变得更好。
人脸识别是通过数字模式来识别人类图像的。我们可以看到很多我们最喜欢的智能手机都加入了这一特殊功能,以此来增强手机的安全性。如果你对这种趋势的运作方式感到困惑,让我们给你举个例子来帮助你更好地理解。比如说,每次你在Facebook上传一张照片时,它会立即识别出你朋友的脸,并询问你是否愿意在照片上标记他们。以前我们不得不花时间在列表中查找朋友从而在图库中标记他们,但这样的日子已经一去不复返了。因为现在,面部识别为你做到了。另一个最适合面部识别功能的例子是iPhone X手机的数字密码功能。它所需要的只是你的脸,你可以瞬间打开你的手机!医疗和保健行业也在努力将面部识别纳入各自的领域。在这项技术的帮助下,科学家们正在制定诊断方法,这样就不必让病人经历耗时的过程。
03
升级的隐私策略
由于一切似乎都在朝着人工智能集成的方向努力,网站和应用程序正在升级其隐私政策,以便让用户了解不断涌入的最新变化。例如,在包含人工智能集成应用程序之后,Facebook一直在努力确保用户的信息完全安全,同时保持透明度,并升级了他们的隐私政策。
04
人工智能芯片
今年另一个流行趋势是支持人工智能的计算机芯片。一个普通的CPU不支持人工智能模块,因此人工智能芯片被单独集成到CPU中,使它们像人工智能机器一样工作。这些支持人工智能的芯片可以进行极其复杂的数学计算,从而集成上述人工智能趋势,如面部识别和机器学习。
为了将这些人工智能芯片带给消费者,英特尔、英伟达、高通、ARM和AMD等顶级硬件制造商正致力于将它们尽快添加到计算机系统中,以便他们能够在不受任何阻碍的情况下进行典型的人工智能计算。所有这些人工智能芯片都将集成语音识别和面部识别功能。汽车行业和医疗保健行业将非常依赖这些支持人工智能的芯片,因此它们的机器可以为用户提供最好的人工智能体验。
05
在过去的几年里,云计算得到了极大的发展,并且随着人工智能的集成,云计算已经上升到了一个非常重要的水平。目前,云计算的最高领导者包括阿里巴巴、谷歌、亚马逊网络服务、Oracle和微软Azure。专家们认为,随着这些最高领导者在全球范围内的不断扩张,它们今年将会发挥更具影响力的作用。此外,专家们还预计,今年云计算的整个业务收入将高达2000亿美元,比业界此前的业绩高出20%。
06
总结
尽管人工智能的形象是一个对手,但它仍然是一个游戏规则的改变者,它将继续为许多不同行业的研发做出贡献。许多专家认为,未来人工智能将成为我们生活中不可或缺的一部分,如果没有人工智能,我们的生存似乎是不可能的。人脸识别、机器学习等仅仅标志着在人工智能帮助下可以实现的奇迹的开端。因为人工智能与计算机的集成,我们曾经在电影中看到的所有让我们惊叹的事情,现在都可以在现实中实现。期待接下来人工智能为我们带来的奇迹!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28