
作者 | Andrew Ste
编译 | CDA数据分析师
How to Become More Marketable as a Data Scientist
作为一名数据科学家,你处在一个高需求的位置。那么,你如何才能更好地提高你的市场竞争力呢?看看这些目前雇主在2019年最想要的数据科学家技能趋势。
这个标题在你看来可能有点奇怪,好像是,如果你是2019年的数据科学家,你已上市...
由于数据科学对当今的商业有着巨大的影响,对DS专家的需求也在增长。目前我正在写这篇文章,仅LinkedIn上就有144527个数据科学工作。但是,重要的是,如何把握这个行业的脉搏,以意识到最快和最有效的数据科学解决方案。为了帮助你,我们对数据痴迷的CV编译器团队分析了部分职位空缺,确定了2019年的数据科学就业趋势。
2019年最受欢迎的数据科学技能
下图是雇主在2019年向数据科学工程师寻求的技能:
对于这一分析,我们查看了StackOverflow、AngelList和类似网站的300个数据科学空缺。有些术语可能在一份工作清单中重复不止一次。
注:请记住,这项研究代表的是雇主的偏好,而不是数据科学工程师自己的偏好。
显然,数据科学更多地是关于基础知识,而不是框架和库,但仍然有一些趋势和技术值得注意。
大数据
根据2018年大数据分析市场研究,企业采用大数据的比例从2015年的17%飙升至2018年的59%。因此,大数据工具的流行程度也越来越高。如果我们不考虑ApacheSPark和Hadoop,(我们将在下一节中详细讨论后者),最流行的方法是MapReduce (36), and Redshift (29).
尽管Spark和云存储广受欢迎,但是Hadoop的“时代”还没有结束。因此,有些雇主仍然期望应聘者熟悉 Apache Pig (30), HBASE(32)和类似的技术。HDFS(20)空缺职位中仍有提及。
实时数据处理
随着各种传感器、移动设备和物联网(18)公司的目标是从实时数据处理中获得更多的洞察力.因此,流分析平台,如Apache Flink(21)在一些雇主中很受欢迎。
特征工程与超参数整定
准备数据和选择模型参数是任何数据科学家工作的关键部分。术语数据挖掘(128)在雇主中很受欢迎。一些雇主也非常重视超参数调参(21)。然而,作为一名数据科学家,您需要首先需要关注特征工程..为您的模型选择最好的特性很重要,因为它们决定了您的模型在其创建的早期阶段是否成功。
处理数据并从中提取有价值的见解的能力是至关重要的。然而,数据可视化(55)对于任何数据科学家来说,技能同样重要。至关重要的是,您可以任何团队成员或客户都能理解的格式表示您的工作成果。至于数据可视化工具,雇主更喜欢。Tableau (54)
总趋势
在职位空缺方面,我们遇到了这样的条件:AWS (86), Docker(36)和 Kubernetes (24)。因此,软件开发行业的总体趋势也适用于数据科学领域。
这个评级中的技术水平是相当的。然而,在数据科学中,有些事情和编码一样重要。这是一种从“数据输出”(如最终数据集和趋势)、可视化以及用这些数据讲述故事的能力。而且,这也是以一种可以理解的方式展示这些发现的能力。了解你的听众-如果他们是博士,以适当的方式和他们交谈,但是如果他们来自C套件,他们不会关心编程,只关心结果和ROI。
——卡拉·金特 数据科学家/所有者
快照数据对于了解当前市场状况是有用的,但它并不代表趋势,因此很难仅仅根据快照来规划未来。我要说的是,R的使用量将继续稳步下降(MATLAB也是如此),而Python在数据科学家中的流行程度将持续上升。Hadoop和BigData之所以上榜,是因为该行业有些惰性:Hadoop将消失(没有人会认真投资),大数据也不再是热门趋势。人们是否需要投入时间学习Scala尚不清楚:Google正式支持Kotlin(也是一种JVM语言),它更容易学习,而Scala有一个陡峭的学习曲线。我也对TensorFlow的未来持怀疑态度:学术界已经转向PyTorch,与其他行业相比,学术界在数据科学方面的影响力最大。(这些意见是我的,可能不代表高德纳的观点。)
——安德里·布尔科夫 高德纳机械学习主任, 百页机器学习书作者
PyTorch是用GPU对CUDA张量进行数学运算强化学习的动力。它也是一个更强大的框架,可以同时在多个GPU上并行代码,而TensorFlow要求将每个操作封装到一个设备上。PyTorch还建立了适用于递归神经网络的动态图。基于TensorFlow的TensorFlow生成静态图表,与基于火炬的PyTorch相比,学习起来更加复杂。TensorFlow反映了更多的开发人员和研究人员。PyTorch将在构建机器学习仪表板可视化工具(如TensorBoard)时显示出更大的发展势头。PyTorch在调试和数据可视化库(Matplotlib)和海运库方面更像Pythonic。Python的大多数调试工具也可以用来调试PyTorch。TensorFlow附带了自己的调试工具tfdbg。
——Ganapathi Pulipaka博士,埃森哲首席数据科学家,50强科技领袖奖获奖者
我认为数据科学的“工作”不同于数据科学的“职业”。工作列表提供了对市场需要的特定技能的洞察力,但对于职业生涯来说,我所见过的最重要的技能之一是学习能力。数据科学是一个快速发展的领域,如果要取得长期的成功,您需要能够轻松地获得新的技术、工具和领域知识。要做到这一点,就要挑战自己,避免过于舒适。
——里昂·里斯伯格创始人/策展人,数据药剂
数据科学是一个快速发展和复杂的行业,一般知识和特定技术的经验同样重要。我希望这篇文章能帮助你更好地了解2019年你需要的两种技能。祝好运!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10