
作者 | Destiny
来源 | 木东居士
0x00 前言
在之前的文章中,已经分享过如何根据数据可视化的目的、数据关系和特征,去选择合适的图表类型。当确定了要使用哪些图表进行数据可视化后,就开始进入可视化作品的设计阶段。从大的方向上来说,影响数据可视化最终效果的因素,分为两个层面:
因此,今天这篇文章,主要从以上两个层面,来总结提升可视化效果的一些经验,从而使数据信息的传达更聚焦、有效,可视化作品的视觉呈现更加美观。
0x01 非数据层面
1.布局要强调最重要的数据信息,将用户注意力集中在可视化结果的最重要区域
在进行某一主题的可视化作品设计时,我们需要根据用户关注的重点数据,对可视化结果的重要性和优先级进行排序。通过对可视化空间的合理布局设计,将用户的注意力集中到可视化结果中最重要的一个或几个区域上。
通常情况下,用户的视觉中心,是位于整个页面的上方和中心区域。如果只有一个重点,放在最显眼的位置,如果有几个重点,尽量集中放置,吸引视觉焦点。除了通过重要信息的位置摆放来吸引用户视觉焦点,还可以通过突出的颜色编码来抓住用户的注意力。
下图为一个汽车经销商的客服监控大屏,对于他们而言,黄色框选的区域是他们关注的重点(1)呼叫量(含在线咨询和呼入咨询)。(2)不同客服沟通方式的满意率。(3)在线咨询和呼入咨询人群各自的地域分布。因此,把这三部分集中放在可视化空间的中心区域,可以让客服人员一眼就关注到重要的信息。
2.图表设计要隐藏不必要元素,弱化辅助元素
在我们进行图表绘制时,需要去掉无意义的背景色填充和颜色区分,弱化网格线,突出真正重要的数据信息。虽然,网格线或者颜色映射可以辅助我们理解可视化图表中的信息,但是如果过于凸显,视觉上会显得杂乱、没有主次,干扰到你真正想展示的信息。对于这类元素,应该尽量隐藏和弱化。
3.交互操作要具有直观性、易理解性
一方面,图表中柱形条或趋势点等都代表实际的数据,但是为了可视化作品的简洁和美观,通常情况下,这些数据标签都会被隐藏;另一方面,由于人们查看数据的习惯是,先看总体和趋势,再看局部和细节。这两个方面的原因,要求可视化产品,需要提供给用户一系列的交互手段,来让用户按照自己的意图和关注点去探索数据。
常见的交互方式有:
1)移动和缩放:当前空间只能显示有限的数据时,或者需要关注局部数据时,可以使用移动和缩放。
一般情况下,移动和缩放是同时使用的两个交互动作。对于移动而言,如果当前显示空间没有把数据展示全,需要把后一数据条露出一部分,指引用户可以进行移动操作;对于缩放而言,其目的一般是为了在更大的空间去查看局部的细节数据,一般也需要移动图表来配合。
2)悬停或点击
悬停的的目的,是为了查看某个对象的详细信息,通常会以弹窗或者「图例+数据」的形式展现。
点击的目的,通常是为了进行数据下钻,在这种情况下,需要通过设计传达给用户可以进行交互的信息,如鼠标悬停变手型、对象的颜色变化或者以文字指引等。
3)图表联动
多图表联动,是可视化中比较常见的一种交互方式,图表联动的前提条件是,多个图表的指标含有共同的维度属性,所以当聚焦于某个图表的某一维度下的属性值时,其他图表会联动变化。
其数据格式通常如下:按维度1中的属性值聚合,可以得到左侧的柱状图对应的数据;按维度2中的属性值聚合,可以得到右侧的饼图对应的数据。
0x02 数据层面
1.当数据项较多时,需要精简数据项,突出重点
2.对于趋势图,若趋势不明显时,坐标轴数值可以不从0开始
当数据差异较小,导致折线的波动范围比较小,走势起伏不明显,此时如果为了更清楚的看到数据的波动情况,坐标轴起始数值可以不从0开始,但是此时需要在页面提示用户,否则用户会误以为波动很大。
虽然,趋势图的主要目的,是查看数据的态势和波动规律,设置坐标轴不从0开始,可以更清晰的看到数据的起伏波动。但是,同时会给用户带来理解的成本,也有夸大差异的嫌疑,因此,不建议频繁使用。
注意:柱状图的坐标轴起点,必须从0开始,否则柱形条的高度就不能代表数据间的差异。
当类别名称太长时,虽然斜放可以避免重叠,但歪着头查看内容,和用户阅读的视觉习惯不符,此时可以考虑把柱条横向放置,把类别的名称置于柱条空隙之间或者柱形条左侧。
4.坐标轴需要做对应的单位转化
图表坐标轴的数值,受数据的大小影响,当数据较大时,一方面将坐标轴数值单位转化为我们熟知的K、W、M、亿需要一定的反应时间,另一方面较大的数值也会占用有限的可视化空间。因此,建议,在一个数据可视化平台内部,需要建立一套公共的单位转化规则,保证图表坐标轴单位转化规则的一致性。具体做法如下:
注意:一个图表中,坐标轴的数值单位需保持一致,一般是以最大数值的单位作为整个坐标轴的统一单位。
0xFF 总结
回顾上文的内容,提升可视化效果的Tips总结如下:
如若大家对提升数据可视化效果这方面,有一些自己的总结,欢迎评论区补充和交流~
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16