
作者 | Destiny
来源 | 木东居士
0x00 前言
在之前的文章中,已经分享过如何根据数据可视化的目的、数据关系和特征,去选择合适的图表类型。当确定了要使用哪些图表进行数据可视化后,就开始进入可视化作品的设计阶段。从大的方向上来说,影响数据可视化最终效果的因素,分为两个层面:
因此,今天这篇文章,主要从以上两个层面,来总结提升可视化效果的一些经验,从而使数据信息的传达更聚焦、有效,可视化作品的视觉呈现更加美观。
0x01 非数据层面
1.布局要强调最重要的数据信息,将用户注意力集中在可视化结果的最重要区域
在进行某一主题的可视化作品设计时,我们需要根据用户关注的重点数据,对可视化结果的重要性和优先级进行排序。通过对可视化空间的合理布局设计,将用户的注意力集中到可视化结果中最重要的一个或几个区域上。
通常情况下,用户的视觉中心,是位于整个页面的上方和中心区域。如果只有一个重点,放在最显眼的位置,如果有几个重点,尽量集中放置,吸引视觉焦点。除了通过重要信息的位置摆放来吸引用户视觉焦点,还可以通过突出的颜色编码来抓住用户的注意力。
下图为一个汽车经销商的客服监控大屏,对于他们而言,黄色框选的区域是他们关注的重点(1)呼叫量(含在线咨询和呼入咨询)。(2)不同客服沟通方式的满意率。(3)在线咨询和呼入咨询人群各自的地域分布。因此,把这三部分集中放在可视化空间的中心区域,可以让客服人员一眼就关注到重要的信息。
2.图表设计要隐藏不必要元素,弱化辅助元素
在我们进行图表绘制时,需要去掉无意义的背景色填充和颜色区分,弱化网格线,突出真正重要的数据信息。虽然,网格线或者颜色映射可以辅助我们理解可视化图表中的信息,但是如果过于凸显,视觉上会显得杂乱、没有主次,干扰到你真正想展示的信息。对于这类元素,应该尽量隐藏和弱化。
3.交互操作要具有直观性、易理解性
一方面,图表中柱形条或趋势点等都代表实际的数据,但是为了可视化作品的简洁和美观,通常情况下,这些数据标签都会被隐藏;另一方面,由于人们查看数据的习惯是,先看总体和趋势,再看局部和细节。这两个方面的原因,要求可视化产品,需要提供给用户一系列的交互手段,来让用户按照自己的意图和关注点去探索数据。
常见的交互方式有:
1)移动和缩放:当前空间只能显示有限的数据时,或者需要关注局部数据时,可以使用移动和缩放。
一般情况下,移动和缩放是同时使用的两个交互动作。对于移动而言,如果当前显示空间没有把数据展示全,需要把后一数据条露出一部分,指引用户可以进行移动操作;对于缩放而言,其目的一般是为了在更大的空间去查看局部的细节数据,一般也需要移动图表来配合。
2)悬停或点击
悬停的的目的,是为了查看某个对象的详细信息,通常会以弹窗或者「图例+数据」的形式展现。
点击的目的,通常是为了进行数据下钻,在这种情况下,需要通过设计传达给用户可以进行交互的信息,如鼠标悬停变手型、对象的颜色变化或者以文字指引等。
3)图表联动
多图表联动,是可视化中比较常见的一种交互方式,图表联动的前提条件是,多个图表的指标含有共同的维度属性,所以当聚焦于某个图表的某一维度下的属性值时,其他图表会联动变化。
其数据格式通常如下:按维度1中的属性值聚合,可以得到左侧的柱状图对应的数据;按维度2中的属性值聚合,可以得到右侧的饼图对应的数据。
0x02 数据层面
1.当数据项较多时,需要精简数据项,突出重点
2.对于趋势图,若趋势不明显时,坐标轴数值可以不从0开始
当数据差异较小,导致折线的波动范围比较小,走势起伏不明显,此时如果为了更清楚的看到数据的波动情况,坐标轴起始数值可以不从0开始,但是此时需要在页面提示用户,否则用户会误以为波动很大。
虽然,趋势图的主要目的,是查看数据的态势和波动规律,设置坐标轴不从0开始,可以更清晰的看到数据的起伏波动。但是,同时会给用户带来理解的成本,也有夸大差异的嫌疑,因此,不建议频繁使用。
注意:柱状图的坐标轴起点,必须从0开始,否则柱形条的高度就不能代表数据间的差异。
当类别名称太长时,虽然斜放可以避免重叠,但歪着头查看内容,和用户阅读的视觉习惯不符,此时可以考虑把柱条横向放置,把类别的名称置于柱条空隙之间或者柱形条左侧。
4.坐标轴需要做对应的单位转化
图表坐标轴的数值,受数据的大小影响,当数据较大时,一方面将坐标轴数值单位转化为我们熟知的K、W、M、亿需要一定的反应时间,另一方面较大的数值也会占用有限的可视化空间。因此,建议,在一个数据可视化平台内部,需要建立一套公共的单位转化规则,保证图表坐标轴单位转化规则的一致性。具体做法如下:
注意:一个图表中,坐标轴的数值单位需保持一致,一般是以最大数值的单位作为整个坐标轴的统一单位。
0xFF 总结
回顾上文的内容,提升可视化效果的Tips总结如下:
如若大家对提升数据可视化效果这方面,有一些自己的总结,欢迎评论区补充和交流~
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27