京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者 | Saurabh Hooda
出品 | CDA数据分析师
What is the Best Python IDE for Data Science?
m创建,于1991年首次发布,解释的高级编程语言是为通用编程而开发的。Python解释器可在多种操作系统上使用,包括Linux,MacOS和Windows。以下是最受欢迎的Python IDE /编辑器,基于受此博客启发的KDnuggets民意调查。
随着近30年的运行过程,Python在编程社区中获得了极大的欢迎。使用IDLE或Python Shell写下Python代码对于较小的项目是有效的,但在完成成熟的机器学习或数据科学项目时却不实用。
在这种情况下,您需要使用IDE(集成开发环境)或专用代码编辑器。由于Python是领先的编程语言之一,因此可以使用多种IDE。所以问题是,“哪个是Python最好的IDE?”显然,Python没有单一的IDE或代码编辑器可以加上“最佳”标签。这是因为他们每个人都有自己的优点和缺点。此外,在众多IDE中进行选择可能非常耗时。
不过不要担心,为了帮助您选择正确的,我们已经整理了一些Python的IDE,专门用于处理数据科学项目。这些是:
平台 - Linux / macOS / Windows
类型 - 通用文本编辑器
Atom是一个免费的开源文本和源代码编辑器,可用于许多编程语言,包括Java,PHP和Python。文本编辑器支持用Node.js编写的插件。尽管Atom可用于多种编程语言,但它通过其有趣的数据科学功能展示了对Python的非凡热爱。
Atom带来的最大功能之一是支持SQL查询。但是,您需要首先安装Data Atom插件才能访问该功能。它为Microsoft SQL Server,MySQL和PostgreSQL提供支持。此外,您可以在Atom中可视化结果,而无需打开任何其他窗口。
另一个有利于Python数据科学家的Atom插件是Markdown Preview Plus。这为编辑和可视化Markdown文件提供了支持,允许您预览,渲染LaTeX方程等。
好处:
缺点:
平台 - Linux / macOS / Windows
类型 - 基于Web的IDE
Jupyter Netbook于2014年诞生于IPython,是一个基于服务器 - 客户端结构的Web应用程序。它允许您创建和操作称为notebook的笔记本文档。对于Python数据科学家来说,Jupyter Notebook是必不可少的,因为它提供了最直观和交互式的数据科学环境之一。
除了作为IDE运行之外,Jupyter Notebook还可用作教育或演示工具。此外,对于刚刚开始使用数据科学的人来说,它是一个完美的工具。您可以使用Jupyter Notebook轻松查看和编辑代码,从而创建令人印象深刻的演示文稿。
通过使用Matplotlib和Seaborn等可视化库,您可以在代码所在的同一文档中显示图形。此外,您可以将整个工作导出为PDF,HTML或.py文件。与IPython一样,Project Jupyter是一系列项目的总称,包括Notebook本身,一个控制台和一个Qt控制台。
好处:
缺点:
平台 - Linux / macOS / Windows
类型 - 特定于Python的IDE
PyCharm是Python的专用IDE。PyCharm to Python就是Eclipse的Java。功能齐全的集成开发环境分别提供免费版和付费版,分别称为社区版和专业版。它是随后安装简单设置的最快的IDE之一,并且是数据科学家的首选。
对于那些喜欢IPython或Anaconda发行版的人来说,知道PyCharm可以轻松集成Matplotlib和NumPy等工具。这意味着您可以在处理数据科学项目时轻松使用数组查看器和交互式图。除此之外,IDE扩展了对JavaScript,Angular JS等的支持。这使得它也适合Web开发。
完成安装后,PyCharm可以很容易地用于编辑,运行,编写和调试Python代码。要从一个新的Python项目开始,您只需打开一个新文件并开始写下代码。除了提供直接调试和运行功能外,PyCharm还提供对源代码控制和全尺寸项目的支持。
好处:
缺点:
平台 - Linux / macOS / Windows
类型 - 特定于Python的IDE
带有橙色的徽标暗示了这个Python IDE是专门为进行数据分析而开发的。如果您对RStudio有一些经验,那么您就会知道Rodeo与它共享许多特征。对于那些不了解RStudio的人来说,它是R语言最流行的集成开发环境。
与RStudio一样,Rodeo的窗口分为四个部分,即文本编辑器,控制台,变量可视化环境以及绘图/库/文件。令人惊讶的是,Rodeo和RStudio都与MATLAB有很大的相似之处。
Rodeo的最佳之处在于它为初学者和退伍军人提供了同样的便利。由于Python IDE允许您在同时创建时进行查看和探索,因此Rodeo无疑是使用Python开始使用数据科学的最佳IDE之一。IDE还提供内置教程并附带辅助材料。
好处:
缺点:
平台 - Linux / macOS / Windows
类型 - 特定于Python的IDE
Spyder是一个开源的专用于Python的IDE。IDE的独特之处在于它针对数据科学工作流程进行了优化。它与Anaconda包管理器捆绑在一起,后者是Python编程语言的标准发行版。Spyder具有所有必需的IDE功能,包括代码完成和集成的文档浏览器。
Spyder特别针对数据科学项目而构建了一个平滑的学习曲线,让您可以快速学习它。在线帮助选项允许您在并行开发项目的同时查找有关库的特定信息。此外,特定于Python的IDE与RStudio有相似之处。因此,从R切换到Python时很适合。
Spyder对Python库的集成支持,如Matplotlib和SciPy,进一步证明了IDE特别适用于数据科学家。除了可观的IPython / Jupyter集成之外,Spyder还拥有独特的“可变浏览器”功能。它允许使用基于表格的布局显示数据。
好处:
缺点:
如何为Python选择最佳IDE?
这完全取决于您需要满足的要求类型。尽管如此,这里有一些一般性建议:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12