
作者 | Saurabh Hooda
出品 | CDA数据分析师
What is the Best Python IDE for Data Science?
m创建,于1991年首次发布,解释的高级编程语言是为通用编程而开发的。Python解释器可在多种操作系统上使用,包括Linux,MacOS和Windows。以下是最受欢迎的Python IDE /编辑器,基于受此博客启发的KDnuggets民意调查。
随着近30年的运行过程,Python在编程社区中获得了极大的欢迎。使用IDLE或Python Shell写下Python代码对于较小的项目是有效的,但在完成成熟的机器学习或数据科学项目时却不实用。
在这种情况下,您需要使用IDE(集成开发环境)或专用代码编辑器。由于Python是领先的编程语言之一,因此可以使用多种IDE。所以问题是,“哪个是Python最好的IDE?”显然,Python没有单一的IDE或代码编辑器可以加上“最佳”标签。这是因为他们每个人都有自己的优点和缺点。此外,在众多IDE中进行选择可能非常耗时。
不过不要担心,为了帮助您选择正确的,我们已经整理了一些Python的IDE,专门用于处理数据科学项目。这些是:
平台 - Linux / macOS / Windows
类型 - 通用文本编辑器
Atom是一个免费的开源文本和源代码编辑器,可用于许多编程语言,包括Java,PHP和Python。文本编辑器支持用Node.js编写的插件。尽管Atom可用于多种编程语言,但它通过其有趣的数据科学功能展示了对Python的非凡热爱。
Atom带来的最大功能之一是支持SQL查询。但是,您需要首先安装Data Atom插件才能访问该功能。它为Microsoft SQL Server,MySQL和PostgreSQL提供支持。此外,您可以在Atom中可视化结果,而无需打开任何其他窗口。
另一个有利于Python数据科学家的Atom插件是Markdown Preview Plus。这为编辑和可视化Markdown文件提供了支持,允许您预览,渲染LaTeX方程等。
好处:
缺点:
平台 - Linux / macOS / Windows
类型 - 基于Web的IDE
Jupyter Netbook于2014年诞生于IPython,是一个基于服务器 - 客户端结构的Web应用程序。它允许您创建和操作称为notebook的笔记本文档。对于Python数据科学家来说,Jupyter Notebook是必不可少的,因为它提供了最直观和交互式的数据科学环境之一。
除了作为IDE运行之外,Jupyter Notebook还可用作教育或演示工具。此外,对于刚刚开始使用数据科学的人来说,它是一个完美的工具。您可以使用Jupyter Notebook轻松查看和编辑代码,从而创建令人印象深刻的演示文稿。
通过使用Matplotlib和Seaborn等可视化库,您可以在代码所在的同一文档中显示图形。此外,您可以将整个工作导出为PDF,HTML或.py文件。与IPython一样,Project Jupyter是一系列项目的总称,包括Notebook本身,一个控制台和一个Qt控制台。
好处:
缺点:
平台 - Linux / macOS / Windows
类型 - 特定于Python的IDE
PyCharm是Python的专用IDE。PyCharm to Python就是Eclipse的Java。功能齐全的集成开发环境分别提供免费版和付费版,分别称为社区版和专业版。它是随后安装简单设置的最快的IDE之一,并且是数据科学家的首选。
对于那些喜欢IPython或Anaconda发行版的人来说,知道PyCharm可以轻松集成Matplotlib和NumPy等工具。这意味着您可以在处理数据科学项目时轻松使用数组查看器和交互式图。除此之外,IDE扩展了对JavaScript,Angular JS等的支持。这使得它也适合Web开发。
完成安装后,PyCharm可以很容易地用于编辑,运行,编写和调试Python代码。要从一个新的Python项目开始,您只需打开一个新文件并开始写下代码。除了提供直接调试和运行功能外,PyCharm还提供对源代码控制和全尺寸项目的支持。
好处:
缺点:
平台 - Linux / macOS / Windows
类型 - 特定于Python的IDE
带有橙色的徽标暗示了这个Python IDE是专门为进行数据分析而开发的。如果您对RStudio有一些经验,那么您就会知道Rodeo与它共享许多特征。对于那些不了解RStudio的人来说,它是R语言最流行的集成开发环境。
与RStudio一样,Rodeo的窗口分为四个部分,即文本编辑器,控制台,变量可视化环境以及绘图/库/文件。令人惊讶的是,Rodeo和RStudio都与MATLAB有很大的相似之处。
Rodeo的最佳之处在于它为初学者和退伍军人提供了同样的便利。由于Python IDE允许您在同时创建时进行查看和探索,因此Rodeo无疑是使用Python开始使用数据科学的最佳IDE之一。IDE还提供内置教程并附带辅助材料。
好处:
缺点:
平台 - Linux / macOS / Windows
类型 - 特定于Python的IDE
Spyder是一个开源的专用于Python的IDE。IDE的独特之处在于它针对数据科学工作流程进行了优化。它与Anaconda包管理器捆绑在一起,后者是Python编程语言的标准发行版。Spyder具有所有必需的IDE功能,包括代码完成和集成的文档浏览器。
Spyder特别针对数据科学项目而构建了一个平滑的学习曲线,让您可以快速学习它。在线帮助选项允许您在并行开发项目的同时查找有关库的特定信息。此外,特定于Python的IDE与RStudio有相似之处。因此,从R切换到Python时很适合。
Spyder对Python库的集成支持,如Matplotlib和SciPy,进一步证明了IDE特别适用于数据科学家。除了可观的IPython / Jupyter集成之外,Spyder还拥有独特的“可变浏览器”功能。它允许使用基于表格的布局显示数据。
好处:
缺点:
如何为Python选择最佳IDE?
这完全取决于您需要满足的要求类型。尽管如此,这里有一些一般性建议:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10