
作者 | Daniel Newman
编译 | 张大笔茹
来源|网络大数据
4 Growing Enterprise AI Trends: Where Are We Now And Where Are We Going?
人工智能比传统的工业自动化和数据处理更牛吗?
答案是肯定的!现在一些诸如图像识别、自然语言处理等AI基本功能已经发展成熟,随着研究的不断深入,AI将来一定会变得越来越强大,能实现的功能也越来越多。
根据麦肯锡预计,到2030年GDP的增长中将会有13万亿美元是来自AI,AI会影响到零售、旅游、交通、物流、医疗、制造业等各个方面,吴恩达也呼吁,企业要设立CAIO(首席人工智能官)。
那现在的人工智能在企业的应用现状如何呢?将来会有怎样的发展?近日,福布斯的一份报道总结了人工智能在企业的四个应用方面和发展趋势,快跟文摘菌一起看看吧。
趋势1:AI必然会超越传统分析
大多数公司已经开始使用一些常见的人工智能功能,而且用户们也基本满意。其中包括个性化定制(个性化广告、电子邮件、自动文本等)和精准营销(您在Spotify,Netflix或亚马逊购物卡等应用上看到的那些推荐)以及其他的营销技术,现在广泛使用的功能是适用于任何规模的企业的。
许多技术也比较成熟了:其中最重要的是机器人流程自动化(RPA)。RPA是AI的初级成果,它即智能又简单。RPA侧重于自动化一个流程,而不是整个企业的垂直流程。
RPA虽然为公司节省了大量的时间和金钱,但尚未达到一定规模。有许多公司最近才刚开始使用RPA技术,而积累一定用户的公司已经开始着手开始进一步流程优化了。
现在既然许多公司已经掌握了基础知识,早期尝到甜头的公司就会想走得更远。他们越来越多地关注AI和ML驱动的预测分析,即企业从数据(特别是实时数据)中提取更多的有价值的信息,甚至利用这些信息做出决策。对知识图谱的理解也更加深入,人工智能可以根据大量数据分析出我们从未想到过的结果。
趋势2:企业使用AI还是会有一定门槛
事实上,目前企业完成人工智能项目还是有难度的。许多公司的项目要么超期,要么需要花很多时间来建立相应的系统,Pactera技术公司最近的一份报告反映了Gartner之前报道的问题:85%的企业AI项目无法如期交付。
Dimensional Research最近发布的另一份报告显示,在人工智能和机器学习方面,每10家企业就有8个表示这他们的AI项目是停滞不前的,而96%的人表示他们在数据质量、数据分类和建模的置信度上遇到了问题。即使像IBM,Uber和亚马逊这样的高科技巨头也不得不在面临巨大的挑战时放弃一些数百万美元的大项目。
这时候是否还要坚持下去呢?其实大可不必!目前对于在AI项目中什么该做,什么不该做已经有足够的总结经验了。一些常见的误区有:起始目标不明确,太多数据(或不当使用数据),使用错误算法,交付成果的周期过长(应该在工作过程中实时检查,保持平衡)。
趋势3:交互性和人性化更强
随着强化学习领域技术的重大进步,人工智能能够通过完成特定目标获得反馈,AI开始变得有“意识”起来。它开始以一种类似人类的但奇怪的方式思考,这也意味着它也有能力开始工作了。人工智能似乎已经到了无限趋近人类的三岔口。
AI正在朝着能够流畅地与人类对话这个目标迈进,初创公司和技术领导者都在争夺聊天机器人,它们不仅能回答问题,而且还具有先进的推理功能。谷歌,微软,亚马逊和IBM都想在会话式人工智能方面取得进步,让AI学会人性化的沟通,就是说人工智能可以根据场景的变化灵活应变。
会话式人工智能的实现需要有力的后端支撑—比如说更强大的硬件。这使得像英特尔这样的公司开始研发用专用推理芯片,以及开发他们声称可以加快计算机深度学习推理过程的DL boost技术。GPU也是竞争越来越激烈,传统上专注于训练的GPU也变得越来越有推断能力,上周NVIDIA公布了一项会话式AI,展示了GPU如何通过推理,实现延迟更短、更自然、更人性化的对话体验。
趋势4:道德问题始终会是个问号
随着人工智能确实变得更加人性化,企业也开始意识到使用,如果AI使用不当会产生严重后果,不仅仅是失业问题,AI算法会是在“不经意间”建立的,且是有偏见的。例如,白人男性写的用于招募的AI软件可能“意外地”选择白人男性作为高度匹配的应聘特征,或者在人脸识别上更多的关注白人。
特别是像IBM这样的公司,他们不仅使用人工智招聘,还用它评价员工的工作表现。你会信任一个机器人来评判你的工作表现吗?来决定你是否应该加薪?这公平吗?
未来,会有更多的与AI相关的道德规范出台。例如,甲骨文建立了一个道德委员会来讨论公平性、问责制和算法的透明度等问题。
IBM也正在研究“可解释的AI”,Microsoft制定了使用聊天机器人责任的指导原则(例如,公司应始终提醒客户他们正在与机器人而不是人进行通信,并提醒他们注意限制)。
由于担心隐私泄露的道德问题,有的城市停止使用人工智能程序面部识别功能,亚马逊也因为同样的原因叫停了员工监控跟踪AI。
人们开始明白虽然人工智能力量强大,现在相互提取或处理的数据类型是没有限制的。但我们必须回答的问题是:应该这样做吗?
展望未来,公司应制定合理的人工智能的发展路线,并且建立例行审计制度来确保他们的人工智能在管理员的掌控之下。这个过程也许会伴随着无休止的辩论:它在哪些方面进行了优化?是否会取代人类?如何对其进行监管以及道德风控等。人工智能的未来令人兴奋,与此同时,这或许也是一个疯狂的旅程。
但是有一点是确定的,那就是人工智能时代已经到来!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28