京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者|walker
来源|磐创AI
【导读】人工智能现在已经变得无处不在了,生活中有很多关于它的应用,可能你正在以某种方式使用它,但你却不知道它。人工智能最流行的应用之一是机器学习,它是人工智能的核心,是使计算机具有智能的根本途径。本文我们便为大家分享了一些我们每天使用的机器学习的例子,可能有的应用中你都不知道它们是由机器学习驱动的。
No1:虚拟个人助理
Siri、小冰、度秘是现在虚拟个人助理的典型例子。顾名思义,当你通过语音询问时,他们便会找寻相应的信息,比如你问“我今天的日程安排是什么?”“从德国到伦敦的航班是什么?”等类似的问题。个人助理在回答问题时,会查看信息、回忆相关查询,或向其他资源(如电话应用程序)发送命令以收集信息。您甚至可以指导助理完成某些任务,如“第二天早上6点设置闹钟”、“后天提醒我访问签证办事处”等。
机器学习是这些私人助理的重要组成部分,首先他们在收集和完善信息上发挥了重要作用,然后将使用这组数据来呈现根据您的首选项定制的结果。怎么样,机器学习是不是很强大呢?
No2:交通预测
No3:视频监控
想象一个人监控多台摄像机!当然,这是一项很难做的工作,也很无聊。这就是为什么训练计算机来完成这项工作的意义所在。
现在的视频监控系统是由人工智能驱动的,它可以在犯罪事件发生之前检测出来。他们会跟踪人们的不寻常行为,比如:长时间不动地站着、绊倒或在长椅上打盹等。这样,系统就可以向警务人员发出警报,从而极大可能地避免事故的发生。此外,当这些活动被报告并统计为真实时,它们将有助于改善监测服务,这些都离不开机器学习在后端的支持。
No4:社交媒体服务
从个性化的新闻订阅到更好的广告定位,社交媒体平台都在利用机器学习为自己和用户带来好处。这里有几个关于社交媒体应用的例子,可能你都没有意识到这些美妙的功能都是机器学习的应用程序。
No5:垃圾邮件过滤软件
No6:智能客服
现在,许多网站在站内导航页面都中提供了在线客服聊天的选项。然而,并不是每个网站都有一个真实的客服代表来回答你的问题。在大多数情况下,你会和聊天机器人交谈,这些机器人倾向于从网站上提取信息并将其呈现给客户。与此同时,聊天机器人也会随着聊天的深入变得更人性化,他们倾向于更好地理解用户查询,并为他们提供更好的答案,这均是由于其底层的机器学习算法驱动的。
No7:搜索引擎结果的优化
谷歌和其他搜索引擎使用机器学习来改善我们的搜索结果。每次执行搜索时,后端的算法都会监视我们的响应结果。如果打开顶部的结果并在网页上停留很长时间,搜索引擎会假定显示的结果与查询一致。同样,如果您到达搜索结果的第二页或第三页,但没有打开任何的网页,搜索引擎会估计所提供的结果与要求不匹配。这样,后端的算法可以改进搜索结果。
No8:商品推荐
购物网站推荐几天前你在网上买了一个商品,然后你不断收到关于购物建议的电子邮件;有时购物网站或应用程序会向你推荐一些符合你口味的商品。当然,这可以改善购物体验,但你知道这背后是机器学习的推荐算法吗?根据你对网站/应用程序的行为、过去购买的商品、喜欢或添加到购物车的商品、品牌偏好等,算法会针对每个消费者提出购买建议。
No9:在线欺诈检测
机器学习证明了它能够使网络成为一个安全地方的潜力,在线跟踪货币欺诈就是其中一个例子。例如:Paypal公司正在使用机器学习来防止洗钱。该公司正在使用一套工具,帮助他们监控发生的数百万笔交易,并区分买卖双方之间发生的合法或是非法交易。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17