
作者 | CDA数据分析师
数据科学是一个研究领域,涉及通过使用各种科学方法,算法和过程从大量数据中提取见解。它可以帮助您从原始数据中发现隐藏的模式。
由于数理统计,数据分析和大数据的发展,数据科学这个术语已经出现。
数据科学是一个跨学科领域,允许您从结构化或非结构化数据中提取知识。数据科学使您能够将业务问题转换为研究项目,然后将其转换回实用的解决方案。
在这里,使用数据分析技术的重大优势:
统计
统计学是数据科学中最关键的部分。它是大量收集和分析数值数据以获得有用见解的方法或科学。
可视化
可视化技术可帮助您使大量的数据易于理解。
机器学习探索了算法的构建和研究,这些算法学习如何预测未来的数据。
深度学习方法是新的机器学习研究,其中算法选择要遵循的分析模型。
1.发现
发现步骤涉及从所有已识别的内部和外部来源获取数据,这有助于您回答业务问题。
数据可以是:
2.数据准备
数据可能有很多不一致,例如缺失值,空白列,需要清理的数据格式不正确。您需要在建模之前处理,探索和调整数据。数据越干净,您的预测就越好。
3.模型规划
在此阶段,您需要确定绘制输入变量之间关系的方法和技术。通过使用不同的统计公式和可视化工具来执行模型的规划。SQL分析服务,R和SAS 是用于此目的的一些工具。
4.模型建设
在此步骤中,实际的模型构建过程开始。在这里,数据科学家分发用于培训和测试的数据集。诸如关联,分类和聚类之类的技术应用于训练数据集。一旦准备好模型就针对“测试”数据集进行测试。
5.操作
在此阶段,您将提供包含报告,代码和技术文档的最终基线模型。经过全面测试后,模型将部署到实时生产环境中。
6.传达结果
在这个阶段,主要调查结果将传达给所有利益相关者。这有助于您根据模型的输入确定项目结果是成功还是失败。
数据科学家
数据科学家是一名管理大量数据的专业人士,通过使用各种工具,技术,方法,算法等来提出令人信服的商业愿景。
语言:R,SAS,Python,SQL,Hive,Matlab,Pig,Spark
数据工程师
数据工程师的角色是处理大量数据。负责开发,构建,测试和维护大型处理系统和数据库等架构。
语言:SQL,Hive,R,SAS,Matlab,Python,Java,Ruby,C ++和Perl
数据分析师
数据分析师负责挖掘大量数据。寻找关系,模式,以及数据的趋势。之后,提供引人注目的报告和可视化,以分析数据,从而做出最可行的业务决策。
语言:R,Python,HTML,JS,C,C ++,SQL
统计员
使用统计理论和方法收集,分析数据,理解定性和定量数据。
语言:SQL,R,Matlab,Tableau,Python,Perl,Spark和Hive
数据管理员
数据管理员应确保所有相关用户都可以访问该数据库。他还确保它正确执行并保持安全,不受黑客攻击。
语言:Ruby on Rails,SQL,Java,C#和Python
业务分析师
改善业务流程,是业务执行团队和IT部门之间的中介。
语言:SQL,Tableau,Power BI和Python
互联网搜索
Google搜索使用数据科学技术在几分之一秒内搜索特定结果
创建推荐系统。例如,Facebook上的“朋友推荐”或“在YouTube上推荐的视频”,一切都是在数据科学的帮助下完成的。
图像和语音识别
语音识别系统像Siri,Google助手,Alexa等运行的数据科学技术。此外,Facebook在数据科学的帮助下,在您上传照片时识别您的朋友。
游戏世界
EA Sports,索尼,任天堂,正在使用数据科学技术。这可以增强您的游戏体验。现在已经开始使用机器学习技术开发游戏。当您移动到更高级别时,它可以自行更新。
在线价格比较
PriceRunner,Junglee,Shopzilla等致力于数据科学机制。在这里,使用API从相关网站获取数据。
数据科学技术的挑战
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04