
作者 | 小尧
来源 | Datawhale
前言
我毕业于上海立信会计学院毕业的税务专业,刚刚毕业的时候还是一枚小财务,后来工作中,身为财务,需要和业务各种斗(si)智(bi)斗(da)勇(zhan),于是在各种机(sheng)缘(zhi)巧(jia)合(xin)下,转行了数据分析。
我的转行经历Part1之税务师事务所
我自己是税务专业毕业,毕业后去了一家小的税务师事务所(合计员工3人),主要做的是各种税务合规、帮企业查缺补漏这样的事情。
大部分分析主要是利用企业外部数据,以及公开数据,模拟税务局分析思路,为企业提供税务局可能分析的角度问题,以此发现企业税法的潜在漏洞,帮助企业及早查缺补漏避免税务稽查。
工作过程中,我发现,对接企业的财务人员时,企业财务人员基本对业务不了解,最多也只是个大体了解,本身没办法发现业务风险点和潜在问题。同时财务人员和业务人员沟通很少,业务财务脱节,极易造成各类问题。
我的转行经历Part2之某东财务税务
后来,我去了某东,负责税务的同时,也帮分析组同事分析具体业务。有一个非常明显的感觉,就是【财务报表不能完全准确地反映企业财务状况】。
1. 财务指标所反映的情况具有相对性,例如预算达成率,超预算未必是坏事,正好达成预算也未必是好事。
2. 财务指标体系不严密,很多业务数据,到达财务时,有大量的缺失和遗漏,导致很多东西财务自己分析不出来。
3. 财务指标的评价标准不统一,很多时候,某个比率或者某个指标,多少是好,多少是差,没有定论。举例说明,某东存货周转天是负数、现金周期也是负数(先收到客户的付款,然后经过30~90天的账期,才结算给商家),问题是这个负数,多大是正常的?这个业内都没有可比数据(阿里有,不给我们),这个数据怎么看?
4. 财务的基础数据不反应实际情况。这个是财务的锅,但是我去业务部门以后,发现不全是这样的。举个简单的例子,车辆作为固定资产,财务账面只有初始成本和折旧这2个数据,而且折旧还是按时间加速折旧的,不能反应实际车辆使用情况。
另外一个感觉就是,财务很多时候,很依赖业务,却又不懂业务。容易被业务耍得团团转。就拿预算工作来说,预算数字是业务报的,执行是业务执行的,超预算或者不足预算是业务那边负责解释的。分析本身也只能很浅的分析,没办法知道业务实质到底和业务同事说的是不是一致的。当然,预算工作中也有各类有意思的事情。比如我们的预算基本只有三种状态:恰好达成、完全不使用预算、远远超出预算。
转行分析
因为之前做财务的时候,有做各类分析工作,后来物流业务那边就把我挖过去了(其实我也想被挖过去,毕竟财务还是挺枯燥的)。到业务这边,发现自己之前财务分析,其实真的很浅。
举几个简单的例子吧,物流体系的货车都是公司自己的,前期财务和物流同事发现车辆损耗严重,车辆折旧年限设定为2年,到期报废。到这里一切都很正常。
后期业务方为了减少报废同时增加员工福利,提出员工购车计划,员工拿低工资,干满2年后,车辆免费(后期改为低价格)转让给员工。神奇的一幕出现了,转让计划的车辆,员工开2年,基本没有什么损耗,但是财务账面折旧计提干净了。换句话说,财务账面认为价值为0的固定资产,实际上和新车差不多。这个时候分析的局限就出现了,购车计划的这些车,司机平时开的都特别小心,生怕车坏了。而平时司机开普通货车,基本上就是横冲直撞,开到极限。车辆使用情况完全不同,财务账面一模一样的东西,到实地一看,价值差距几倍。
这个时候,我就深刻感觉到了财务分析的局限性。财务只是根据账面数据,和极少信息进行分析;而业务中,很多非财务信息、各种难以量化的指标、非结构化的指标,在传递到财务的时候,都丢失了。导致整个财务分析犹如水中望月雾里看花。
再分享一个例子吧,不知道大家有没有开过高速。上高速基本上要交通行费,物流货车基本上走高速,这一点大家都没问题吧。物流分析有个工作就是跟车,就是和货车司机一起跑线路。接下来就是骚操作了。我看到高速入口在前面,司机就是不上高速,全程还超速行驶,接近交警测速仪的时候又降到正常速度。一路上开车开得我一个坐副驾驶的人,心惊胆战的。最神奇的是,某东有时效限制,每次这些司机都能按时到达目的地仓库。某东是报销高速通行费的,我就问司机,“通行费你不报销了啊?”司机说,他们有微信群,要什么时间什么路线的通行费发票都有,都是真发票,还都是别人不要的。到时候按额度报销就可以了。
其实这些问题,从财务角度,都可以解决。如果**能事先知道**不同计划的车辆,损耗程度不同,那么,财务完全有理由按不同的折旧年限进行折旧。如果**能事先知道**很多司机不走高速,拿其他人的车票报销通行费,那么完全可以审核的时候,核对车牌号,就完全可以避免这些问题。
然而,如果真的财务都把这些问题解决掉,业务会变好吗?之前我也和我前领导聊过,一致感觉是,绝对不会,反而会变差。其实原因很简单,如果员工购车计划,按一开始设想的,车辆用到基本报废,再送给员工,那么就不会有员工参加这个计划了;换句话说,其实很多人,是考虑自己爱护车辆,过户的时候还是个新车,才愿意接受低工资的。通行费的问题,之前做过市场调研,因为某东是五险一金全额缴纳的,很多司机不需要,正好高速路费报销有漏洞,司机实际到手的RMB和同行业差不多,所以司机才愿意干活。
数据分析师的工作内容
我理解的数据分析是一个业务支撑性质的工作。数据分析本身是通过分析数据,最终解决商业问题。主要是数据收集(埋点),分析数据之间关系(搭建指标体系),日常分析各个数据,反馈到各个业务条线上,来指导业务工作。个别时候还有专项分析某个场景和数据,为业务提供决策支持。
其实日常工作中,找数据、找逻辑,占了大部分。另外一部分工作是“老板要你分析什么,你就分析什么”,其实工作中,很多时候没有太大主动权,不过别纠结,没办法。
简单的说一下分析过程吧。比如B站用户,看直播过程中,右下角会有一个倒计时小宝箱,点击送银瓜子(按F进入坦克)。这个活动要怎么分析呢?比如一个分析角度,有多少人点击宝箱,那我该怎么分析呢?首先,我要埋点。埋点就是,每个点击的时候,记录谁在什么时候点击(action)了这个动作,有这些数据,后期才能分析。
接下来,我就要看看每天每个时段有多少人点击这个小宝箱,这个就是最简单的数据指标体系的构建。比如,我看到今天投喂辣条的人比较多,我就要看看原因,比如我今天辣条多的原因是,我做了个直播(PS:我想要邮轮~火箭~豪宅~~要打赏~~~拉到最底下可打赏私聊勾搭作者)。
然后呢,我要通过分析结果,反过来促进我的直播。比如大家打赏非常热烈,那么我每天就会非常开心的上B站直播,形成正循环。至于数据报表的配置搭建这部分,基本学了BI和SQL之后,问题都不大,放心吧。
数据分析师的能力要求
1.技能要求
首先要说明一点,技能、工具是为目的服务的,重要的是工具好用,工具不是目的。我们从数据获取,数据预处理,数据分析,结果呈现等几个方面分别来说明。
数据获取:
SQL技能和埋点(埋点主要是互联网行业),还有excel。大多是情况下,数据来源都是数据库或者数据仓库,个别时候需要爬虫(适合收集学习类工作)。内部数据使用SQL(广义概念,含Hive SQL)是一种最简单有效的获取数据的方式。SQL本身入门门槛低,上手快,专业性不是很强。
数据预处理:
以python为例,大部分会用到pandas和sklearn工具包。
数据清洗的环节目标是提高数据质量,为后续的分析工作奠定基础,是高质量数据的最后一道屏障。
数据分析:
这一阶段是数据分析工作的核心,首先需要从业务场景的理解出发,基于数据,从趋势、分布中总结规律,分析业务现状,提出业务的改进建议。
结果呈现和结果落地:
这部分包括各种人际交往、沟通能力、各种软技能。这里就不好讲解了。
2.思维要求
这里直接推荐几本书:《谁说菜鸟不会数据分析》《增长黑客》《精益数据分析》《运营之光》
感悟与分享
关于硬技能
这2年python非常火,尤其很多BI工程师和报表工程师,通过学python,再加上数据分析课程,也转行成了偏技术类的数据分析。因此很多人可能会想,学个python。我个人也是自学python的,学下来的感觉是,python只是一个技能,真正有价值的,是**大脑里面的商业模型和分析思路
真的不要把Python和数据分析画上等号。对分析师来说,熟知业务的重要性远比你会一两个工具重要,而论重要性,SQL的重要性比Python重要的多
关于怎么转行
我自己的感受是,重视业务,了解公司怎么赚钱,而不是复制粘贴之前的凭证,只想我把凭证做好,报表做平,就好了。
当然,说起来简单,实际上很多人,应该大部分是工作1~2年的人或者在校生吧,工作以后应该会感觉,很多工作都是重复操作,但是有没办法,重复性工作占用了大量工作时间。所以,我自己一直就觉得,对大家来说,第一点最有可操作性的建议就是***花时间学excel***,如果有时间再加上**VBA**。工作效率提高以后,时间就是自己的了。到时候要学习业务,或者做一些自己的事情,都是OK的。
其次,我之前做审计的经验是,很多公司**系统都不好用**,之前某东的财务系统也不好用,所以当时和IT一起优化了一部分系统功能。后来IT开始上财务机器人,我也协助参与了一些。参与这类项目,基本就全盘了解整个业务每个流程每个节点,再结合一部分审计思维,很容易可以发现问题。关键是,当你有了整体思维, 你看问题的角度就完全不同了。
第三个就是数据分析实践。这些工作中也会遇到。比如,领导有时候会问,为什么收入上升/下降了。这个时候,如果只是业务方随便解释一个原因,然后看一下同比、环比,就解释给领导,一般不够。每个原因都有前因后果,都有内因外因,深入挖问题才可以。(当然一般业务方不一定有时间陪你回答)
最后,有时候选择比努力更重要。命运是抓在自己手里的,想过得好一点,就要刻苦一点。如果你现在感到迷茫,或许你可以静下心来学一样技能,不一定是数据分析,也可以是英语,也可以是PPT,甚至可以是写作等等。多学习多沉淀,你未来的职场生涯的路会相对宽一点,你也能有选择多条路的自信。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28