
作者|大鹏
来源|Python数据科学
现在的职场竞争越来越激烈,不学上一两门新技能,保持自己知识更新,很容易被年轻后辈超越。有些人选择学一门外语,有些人选择学习职场上为人处事的能力。
如果你的工作需要和数据打交道,相信我,Python一定能成为你升职加薪的敲门砖。
为什么?
因为高效。
我们来看一份年薪24w-48w的高级数据分析师的招聘信息,以下4点能力是用人单位较为看重的:
再仔细梳理,你会发现即便不是数据分析师,具备这4项能力都能在职场中为自己加分。
试想一下,一场电商大促结束复盘,别人花大把时间梳理数据,而你有更多精力分析定位问题,还能做出更好看的交互图表。业务分析,你拉大量的数据,手动打标签做图表,都不如几行Python代码来的高效。
我们来一条条解析。
01
业务洞察力和执行力
业务洞察力和执行力,说的通俗点, 就是如何从海量信息中获取有效信息。
Python可以利用MySQLdb库连接数据库,可以利用pandas和matplotlib进行清洗和分析,可以利用pyecharts进行交互可视化,可以利用numpy和sklearn进行建模,甚至可以利用pyinstaller打包工作流交给同事,共同提效……
调用matplotlib库用几行代码快速整理数据并出图
当工具上更高效,就有更多的时间去深入了解和分析业务。
02
沟通能力
Python还可以提升沟通力?
数据分析师属于业务端工作,长期接触公司项目与客户需求。而技术端一般只管产品功能实现。掌握Python的分析师,会更了解业务端和技术端双方的痛点在哪里。
03
Python和SQL
和庞大的数据打交道,只会Excel是不经济的,所以大部分数据分析师工作都要求SQL技能。
SQL语言入门很简单,掌握了存取数据以及基本的数据清洗函数之后,就可以着手工作了。初级的分析师可能会取数到本地再做分析,高效的数据分析师则会使用Python连接数据库进行分析,让工作流变得更高效。
使用Python工具库pymongo进行数据库文档查询
04
主动性和逻辑性
主动性和逻辑性是个玄学,职场人都会说自己有主动性,但问题是老板怎样才能感受到你的主动性呢?比如……
使用Python写小工具,几分钟完成912个Excel表格合并
总结来说,要当一名“高级”数据分析师,一直吃老本是不可能的。只有不断学习不断思考才能做到顶尖。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14