京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者|陈枫、蒋馨怡
来源|读芯术
表弟,00后,刚上大学的青年才俊,21世纪电子产品消费主力军,新科技的狂热爱好者。
前两天华为mate 20 X 5G版首发,他联合全家七大姑八大姨帮抢新机。就算明年5G机铁定降价也挡不住他要“抢头柱香”的热情。
10:08,全家各大平台聚精会神拼手速,就那么老眼昏花般的一秒,全部售罄。
恍惚一下,回到了最初的2G时代,刚上大学我有了人生中第一部手机——诺基亚7650。至今也忘不了30W像素带来的震撼,还有滑动翻盖时的顺畅和奢华。
2002年至今,不到20年,5G已然来临。我们已经无法清楚回想2G的蜗速。00后也不知道那时诺基亚的贪吃蛇有多好玩。
拉长时间线,才发觉“世上已千年”。
下一个改变世界的是什么?
自计算机发明之后,人类一直在寻找“下一件改变世界的大事”。虽然当下大多数人使用的手机都比最早问世的超级计算机快,但身处时代之中的人们,还是很少去认识,或者反思世界变化的速度和方向。
大数据、人工智能和物联网是近年来被滥用最多的三个术语,许多人不知道这三个技术是如何联系在一起的,也不知道它们如何为我们所期望的技术进步铺平的道路。
本文将阐述这些概念,并进一步探讨它们在工业中的重要性、面临的阻碍以及未来的发展方向。
“数据”和信息的大爆炸
1989年,在万维网发布之后的几年中,互连的机器数量大幅增加。1994年至2000年间,当GPS变得切实可行时,计算机和连接设备产生的数据量急剧增加,该设备网络的潜力很快就发挥出来了。
1999年,“物联网”这个术语首先由麻省理工学院的凯文·阿什顿(Kevin Ashton)创造,他假设:“如果计算机知道世上所有事物的知识,那么它们会在没有任何人类帮助的情况下使用自己收集的数据。这样一来,我们能够跟踪并计算所有内容,大大减少浪费、损失和成本。”
随着GPS技术的兴起,RFID标签用于会员卡系统,掌上电脑市场升温,企业能够“看到”他们的流程,而且各种条件都非常适合信息爆炸的出现。由于现有工具处理的数据量过多,2005年,Roger Mougalas首次使用“大数据”这一术语。
2007年iPhone的推出标志着“大数据”进军消费领域,从那时起,智能手机、可穿戴设备、平板电脑和各种智能设备的崛起改变了我们对物理世界和数字世界的看法。
大变化:数据的存储和应用
与此同时,社交媒体和电子商务的兴起也导致了“数字角色”概念的出现,数据的惊人价值越来越有目共睹。21世纪也出现了公司专门成立的数据部门,以帮助企业管理组织数据并用其来改进流程。
联合创始人兼LatentView Analytics主席Venkat Viswanathan在消费者营销领域体验到了数据的力量,并对商业环境也产生了兴趣。Viswanathan表示,“实现这一转变是由于数字化的数据更加精细,公司正在从消费者领域获取创意,并将其应用于行业中。”
工业环境已经被用于技术和数据的收集,因为仅使用数据就可实时影响下达的决策,如检查压力水平、温度等。直到专业传感器的数据变得精细化及存储成本的下降时,人们才考虑将数据存储起来供以后分析使用。Viswanathan说:“随着存储成本下降以及云存储在过去5至8年间投入使用,我们终于有机会回顾历史数据并发现数据当中的模式。”
大数据为AI提供无限可能
一旦数据存储成为各个企业的可行选择,云就可以收集庞大而详细的数据集,人工智能终于有了坚实的基础。多年来,人工智能研究经历了多次研究,其中算法技术的发展由于兴趣或投资的缺乏而陷入困境。
随着越来越多数据的可用性的增强,人工智能研究分为越来越细的应用,最新一代算法在基础领域取得了巨大的进步,例如自然语言处理、计算机视觉和机器翻译,这是因为出现了数量巨大且可供学习的信息。
可用于训练的各种来源的数据的激增,使得人工智能系统获得了巨大的改进,这种现象被称为“数据的不合理有效性”,这表明即使是简单的算法,只要有足够的数据,也可以得出准确的结论。结合几十年的工作来完善这些算法,从而去执行类人化的表现而完成特定的任务,人工智能终于有了值得全力以赴的一面——用于获取有现实意义的结果。
大数据的发展必然推动了人工智能领域,正如红木软件首席问题解决官Devin Gharibian-Saki所说:“人工智能系统的运行基于统计模型,因此如果没有大量数据来支持人工智能,就无法运行人工智能。”
物联网、AI和大数据是一个硬币的三面
现在,我们可以运用大量传感器、物联网设备,甚至是用户数据,在所有业务领域进行预测和决策,但前提是用户必须了解这些数据的含义和来源。“你必须知道你最终想要什么,否则,所有数据、技术和传感器都是无用的。”Gharibian-Saki说道。特别是在一个任何可测量的环境中,数据丢失的风险比以往更大。企业必须记住,孤立地使用物联网、大数据或人工智能无法快速取胜,Gharibian-Sak接着说:“我们总是寻找能够解决所有问题的一个方案,但物联网设备、传感器、机器人技术和人工智能是同一系统中的不同所有组成部分,如果没有这种整体观点,将需要很长时间才能取得巨大成功。”
物联网、大数据和人工智能相互融合并创建自动化生态系统。物联网设备收集数百万条标准的数据,然后在云中进行整理,用于训练和改进人工智能算法。物联网、大数据和人工智能相互联系,相互促进。未来,必将带来新世界的巨变。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27