
作者|陈枫、蒋馨怡
来源|读芯术
表弟,00后,刚上大学的青年才俊,21世纪电子产品消费主力军,新科技的狂热爱好者。
前两天华为mate 20 X 5G版首发,他联合全家七大姑八大姨帮抢新机。就算明年5G机铁定降价也挡不住他要“抢头柱香”的热情。
10:08,全家各大平台聚精会神拼手速,就那么老眼昏花般的一秒,全部售罄。
恍惚一下,回到了最初的2G时代,刚上大学我有了人生中第一部手机——诺基亚7650。至今也忘不了30W像素带来的震撼,还有滑动翻盖时的顺畅和奢华。
2002年至今,不到20年,5G已然来临。我们已经无法清楚回想2G的蜗速。00后也不知道那时诺基亚的贪吃蛇有多好玩。
拉长时间线,才发觉“世上已千年”。
下一个改变世界的是什么?
自计算机发明之后,人类一直在寻找“下一件改变世界的大事”。虽然当下大多数人使用的手机都比最早问世的超级计算机快,但身处时代之中的人们,还是很少去认识,或者反思世界变化的速度和方向。
大数据、人工智能和物联网是近年来被滥用最多的三个术语,许多人不知道这三个技术是如何联系在一起的,也不知道它们如何为我们所期望的技术进步铺平的道路。
本文将阐述这些概念,并进一步探讨它们在工业中的重要性、面临的阻碍以及未来的发展方向。
“数据”和信息的大爆炸
1989年,在万维网发布之后的几年中,互连的机器数量大幅增加。1994年至2000年间,当GPS变得切实可行时,计算机和连接设备产生的数据量急剧增加,该设备网络的潜力很快就发挥出来了。
1999年,“物联网”这个术语首先由麻省理工学院的凯文·阿什顿(Kevin Ashton)创造,他假设:“如果计算机知道世上所有事物的知识,那么它们会在没有任何人类帮助的情况下使用自己收集的数据。这样一来,我们能够跟踪并计算所有内容,大大减少浪费、损失和成本。”
随着GPS技术的兴起,RFID标签用于会员卡系统,掌上电脑市场升温,企业能够“看到”他们的流程,而且各种条件都非常适合信息爆炸的出现。由于现有工具处理的数据量过多,2005年,Roger Mougalas首次使用“大数据”这一术语。
2007年iPhone的推出标志着“大数据”进军消费领域,从那时起,智能手机、可穿戴设备、平板电脑和各种智能设备的崛起改变了我们对物理世界和数字世界的看法。
大变化:数据的存储和应用
与此同时,社交媒体和电子商务的兴起也导致了“数字角色”概念的出现,数据的惊人价值越来越有目共睹。21世纪也出现了公司专门成立的数据部门,以帮助企业管理组织数据并用其来改进流程。
联合创始人兼LatentView Analytics主席Venkat Viswanathan在消费者营销领域体验到了数据的力量,并对商业环境也产生了兴趣。Viswanathan表示,“实现这一转变是由于数字化的数据更加精细,公司正在从消费者领域获取创意,并将其应用于行业中。”
工业环境已经被用于技术和数据的收集,因为仅使用数据就可实时影响下达的决策,如检查压力水平、温度等。直到专业传感器的数据变得精细化及存储成本的下降时,人们才考虑将数据存储起来供以后分析使用。Viswanathan说:“随着存储成本下降以及云存储在过去5至8年间投入使用,我们终于有机会回顾历史数据并发现数据当中的模式。”
大数据为AI提供无限可能
一旦数据存储成为各个企业的可行选择,云就可以收集庞大而详细的数据集,人工智能终于有了坚实的基础。多年来,人工智能研究经历了多次研究,其中算法技术的发展由于兴趣或投资的缺乏而陷入困境。
随着越来越多数据的可用性的增强,人工智能研究分为越来越细的应用,最新一代算法在基础领域取得了巨大的进步,例如自然语言处理、计算机视觉和机器翻译,这是因为出现了数量巨大且可供学习的信息。
可用于训练的各种来源的数据的激增,使得人工智能系统获得了巨大的改进,这种现象被称为“数据的不合理有效性”,这表明即使是简单的算法,只要有足够的数据,也可以得出准确的结论。结合几十年的工作来完善这些算法,从而去执行类人化的表现而完成特定的任务,人工智能终于有了值得全力以赴的一面——用于获取有现实意义的结果。
大数据的发展必然推动了人工智能领域,正如红木软件首席问题解决官Devin Gharibian-Saki所说:“人工智能系统的运行基于统计模型,因此如果没有大量数据来支持人工智能,就无法运行人工智能。”
物联网、AI和大数据是一个硬币的三面
现在,我们可以运用大量传感器、物联网设备,甚至是用户数据,在所有业务领域进行预测和决策,但前提是用户必须了解这些数据的含义和来源。“你必须知道你最终想要什么,否则,所有数据、技术和传感器都是无用的。”Gharibian-Saki说道。特别是在一个任何可测量的环境中,数据丢失的风险比以往更大。企业必须记住,孤立地使用物联网、大数据或人工智能无法快速取胜,Gharibian-Sak接着说:“我们总是寻找能够解决所有问题的一个方案,但物联网设备、传感器、机器人技术和人工智能是同一系统中的不同所有组成部分,如果没有这种整体观点,将需要很长时间才能取得巨大成功。”
物联网、大数据和人工智能相互融合并创建自动化生态系统。物联网设备收集数百万条标准的数据,然后在云中进行整理,用于训练和改进人工智能算法。物联网、大数据和人工智能相互联系,相互促进。未来,必将带来新世界的巨变。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28