京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者 | Saurabh Hooda
来源 | CDA数据分析研究院
简短的回答是肯定的。只要数据科学家中存在“数据”,结构化查询语言(或我们称之为“quel”)将仍然是其中的重要部分。本文将深入探讨数据科学及其与SQL的关系,包括5 W和1H的答案 - 如何,为什么,何地,何时,谁和什么。我们还将学习数据库管理系统(DBMS)的基础知识,并了解数据科学家如何成为您职业生涯的最佳选择。
什么是数据科学
数据科学的视角非常广泛,作为一名数据科学家需要深入了解各种数学流,机器学习、计算机科学、统计研究、数据处理以及多个领域的专业知识。这些数学流中的每一种知识系统都需要对数据进行大量地研究和探索,无论是收集、分析还是处理。
为什么数据科学如此受欢迎
目前来说数字世界正处于巅峰时期,随着市场需求和广泛营销策略的不断增长,数据已成为所有营销目的的关键。例如,如果我想购买一部新手机,我会去亚马逊或Flipkart这样的网上商店,浏览不同的品牌,挑选心仪的品牌手机添加到我的购物车中,最后经过一些对比研究后决定购买。在网站后台,在线商店会保存我的购物车信息和浏览历史记录,并在我下次登录时向我展示更多相关品牌的手机推荐。即使我不买,在线商店也会给我发电子邮件或短信,提醒我购物车里的商品“还在等着我”。 因此,数据在建立买卖双方关系中起着至关重要的作用。客户展现的历史行为数据越多,向买方呈现的个人定制化推荐程度就越高。这种个性化推荐算法不仅适用于电子商务,也同样适用于各行各业用户价值分析和个性化营销方案中。
怎么样实现
数据在哪里
所有的数据都存储在数据库中。因此,SQL对于处理需要定期加工和转换的大量数据至关重要,同时它也是数据科学打算做的精准营销和用户反馈的重要工具。例如,如果您不喜欢Facebook给您推荐的视频,您可以选择'隐藏此项',Facebook会立即向您询问隐藏原因。用户的这些选项数据也需要存储在数据库中。
通过像SQL这样的关系数据库,数据科学提供了一个连续的系统来处理和改进数据的呈现和处理方式。
SQL应用领域
SQL是整个数据科学领域的重要组成部分。但是,在企业实际业务工作中它究竟适用于哪些工作呢?如果您想成为数据分析师,数据工程师或数据架构师,您将需要学习SQL以及C,R和Python等编程语言。这是一个简单的图表,显示了使用SQL的阶段:
图片中突出显示的交集部分是我们需要SQL知识的地方:大数据,大数据分析和数据分析。
为何选择SQL
尽管NoSQL数据库提供了高性能和高速度,但SQL数据库仍然被广泛用于所有实际业务工作中。有更多的开发人员了解SQL技术,因此支持和翻译帮助文档使其更加丰富。此外,数据完整性是使SQL与任何NoSQL数据库分开的一个关键因素,通过确保没有重复或未经授权的数据可以进入系统。此外,对于复杂的查询和连接,结构良好的关系数据库可以更好地管理数据。
什么是SQL
SQL是一种关系数据库管理系统,用于存储,检索,更新和读取数据库中的数据。
在本文中,我们将专注于SQL如何对数据科学起作用。让我们举一个简单的例子,说明您作为数据科学家如何使用SQL来收集和分析数据。
假设您想通过检查有多少用户订购它的副本来了解作者'Carl Shan'的一本名为'The Data Science Handbook'的书的受欢迎程度。因为SQL是具有适当模式的结构良好的语言,所以您可以使用如下结构:
customer table
order_details table
book table
要获取此类数据,我们需要使用一些关键字段或主键和外键字段来连接这三个表。在这种情况下,order_id对于所有三个表都是共有的关键字段,可以用来作为连接字段,使用这些连接后的数据,我们可以编写查询语句来获取必要的字段信息。
在现实生活中,这种系统可以处于多个层次的分析需求中,我们需要使用SQL分析和处理大量数据。来自数百万用户的日常行为记录数据被存储在SQL数据库中,用于不同目的的分析需求。想象一下,在不使用SQL的情况下我们能够完成这些海量数据的处理和分析工作吗?
虽然有些人认为SQL在数据科学家工作中的作用正在减少,但事实并非如此。SQL在数据分析工作中依然十分的重要。
以下是数据科学家应该了解的一些关键SQL概念:
谁应该学习SQL
到现在为止,您应该明白SQL相关从业者是否可以成为数据科学家以及如何成为一名数据科学家。如果您对数据非常感兴趣,并希望将数据科学作为您的职业选择,那么您一定要学习SQL。
数据科学家作为职业选择
当今社会每天都会产生大量数据,需要将其转换为新的业务解决方案,设计和产品,这些只能来自数据科学家的创造性思维。这种需求至少会在几十年内增加。除了行业为数据科学家提供的脂肪包之外,吸引专业人士参与这项工作的挑战和不断增长的角色也是如此。从数据管理员,数据架构师,数据分析师,业务分析师到数据管理员或商业智能经理,在数据科学圈中有很多机会可供选择。了解SQL,R和Python等编程语言,统计和应用数学,结合批判性思维和行业知识,可以比你想象的更快。
作者:Saurabh Hooda曾在全球范围内为各种电信和金融巨头工作。在Infosys和Sapient工作了十年之后,他开始了他的第一家创业公司Leno,以解决超本地书籍共享问题。他对产品营销和分析感兴趣。他的最新企业Hackr.io为每种编程语言推荐了最好的数据科学教程和在线编程课程。所有教程都由编程社区提交并投票。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04在CDA(Certified Data Analyst)数据分析师的工作链路中,数据读取是连接原始数据与后续分析的关键桥梁。如果说数据采集是“获 ...
2026-01-04尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31