京公网安备 11010802034615号
经营许可证编号:京B2-20210330
上海57期CDA数据分析就业班学员
毕业院校:德州学院
专业:光电应用技术
入职信息:环海学院,数据分析师,上海
来cda是前同事介绍,因为他就是从cda出去的,我为什么来呢,是因为之前的公司是创业公司,不幸解散了,所以又得重新找工作,那时候是元旦,一直到过年我都没有找工作,年后回来,想了想还是找和之前工作一样的吗,复制粘贴复制粘贴工作,完全不想去找,我就想起了,和我同部门的那个同事,数据分析,会的简直不是比我高一个lever,Python爬虫,机器建模,以前没了解到的那些好像他都会,然后就准备找他问问在哪里学的,他给我推荐了cda,问完就去校区报名了。
正式学习中,发现就连Excel也是能玩出花来的,功能非常强大,三个月的时间说实话很紧很紧,因为要学的东西实在是太多,完全消化也是很难的,有些公式知道就可以,不需要完全都背下来记住,记住关键字,主要用作什么,以后需要再去网上找都可以,学东西一定要抓住重点,全部抓的话,费精力,重要的也记不好,在课上一定要跟老师走,回放是用来温习的,不要以为有回放,课上就不认真听了,有些不懂的可以当场问,效果会更好。
课下一定要复习和预习,因为一天全是满课,讲的知识量很大,我们同学大多都是转行,之前并没有类似学习的经历,所以很多东西并不能当堂就理解并记住,晚上在校区上自习的话有些老师还在教室,可以及时问,及时解答,也可以问老师一些,目前行业内的问题,老师大多数也在其他公司就职或者有自己的公司,所以对目前行业内的见解和看法对于我们之后的就职也有很大帮助。
预习当然也很重要,报名后cda会给一些预习视频,是往期老师上课的一些视频,课前也串一串老师要讲的知识点,对哪些不明白的记一下,课上着重听。
关于就业,大家最关心的就是薪资了,我的薪资相对于其他同学,应该算是最低的,因为当时找工作时家人和我自己的想法就是先入行,薪资没那么重要,当然这样想现在认为也不是完全错,薪资当然越高越好了,看到高薪的同学也替他们开心的,我本人认为应聘时最重要的就是自信,面试前多做一些准备,把之前的工作经历试试结合数据分析应该怎样做,我来的这家公司虽然工资低,但这个氛围我是很喜欢的,因为我的直属领导是个很爱学习的人,并带着大家一起学,我刚入职的时候,他们正在学习数据分析,是整个部门包括策划,设计,运营,开发都在学数据分析,那时候的学习快接近尾声了,我就参加了后面的两到三课,每周会对这个学习做一个总结分享,最后毕业,他们以全优毕业,算是很不错的了,当时就是这种学习氛围感觉很喜欢,所以对高薪同学也会有些羡慕,但我觉得自己的运气也还算不错。
业务这方面,必须要了解,要不然分析出来的就只是简单的数据,我每天早上会去的早一些,和策划,开发聊一聊公司的业务,哪些因素会影响数据波动,一些客观因素也许对某一天的数据波动非常重要但可能是我们想不到的,刚开始看看以前的数据报表,对某周某月的数据变化,大致了解一下,感觉异常的就多问问同事,在别人不忙的情况下最好。
对于数据分析,本人认为很重要的就是数据分析思维,对于维度的拆解,在工作中遇到的问题大多也是按这种,还有就是不要有太大压力,因为大多的数据分析并不是你的一个分析结果直接导致公司的收益增减,起初先是做一个监控,有一定数据之后,可以做分群,比如薅羊毛客户,风险客户之类可能我到的是一个小公司,是这种模式吧。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17